1樓:柔玉花種黛
n≥2時,
an²+2an=4sn+3
a(n-1)²+2a(n-1)=4s(n-1)+3an²+2an-a(n-1)²-2a(n-1)=4[sn-s(n-1)]=4an
an²-a(n-1)²-2an-2a(n-1)=0[an+a(n-1)][an-a(n-1)]-2[an+a(n-1)]=0
[an+a(n-1)][an-a(n-1)-2]=0an>0,an+a(n-1)恆》0,因此只有an-a(n-1)-2=0
an-a(n-1)=2,為定值
數列是以2為公差的等差數列。
2樓:卡組統領
根據an^2+2an=4sn+3有:
a(n+1)^2+2a(n+1)=4s(n+1)+3於是an^2+2an = a(n+1)^2+2a(n+1)-4a(n+1)=a(n+1)^2-2a(n+1)
(an+1)^2 = [a(n+1)-1]^2化簡得到
a(n+1) = -an
a(n+1) = an +2
因為an>0,所以只有
a(n+1) = an+2 滿足要求,也就是他是等差數列又因為n=1時,a1^2 +2a1 = 4a1+3,a1 = 1an = 1 + 2(n-1)=2n-1
(2)bn = 1/(2n-1)(2n+1) = 0.5 *[1/(2n-1) -1/(2n+1)]
sbn = b1 + b2 +....+bn= 0.5(1/1-1/3) + 0.5(1/3-1/5) +....+0.5[1/(2n-1) -1/(2n+1)]
=0.5-0.5/(2n+1)
3樓:sky魔界至尊
根據an^2+2an=4sn+3有:
a(n+1)^2+2a(n+1)=4s(n+1)+3兩式互減,可得a(n+1)^2-2a(n+1)=an^2+2an兩式兩邊加1,可得:[a(n+1)-1]^2=[an+1]^2同時開方可得a(n+1)=an+2
將n=1帶人題目中的式子可得a1=3
則an=3+2(n-1)=2n+1
2)bn=1/ana(n+1)=1/(2n+1)(2n+3)=1/2[1/(2n+1)-1/(2n+3)]
則sn=1/2[1/3-1/7+1/7-1/9……+1/(2n+1)-1/(2n+3)] (中間部分可抵消)
=1/2(1/3-1/2n+3)
=n/6n+9
sn為數列{an}的前n項和.已知an>0,an²+2an=4sn+3
4樓:小小芝麻大大夢
n≥2時,
an²+2an=4sn+3
a(n-1)²+2a(n-1)=4s(n-1)+3an²+2an-a(n-1)²-2a(n-1)=4[sn-s(n-1)]=4an
an²-a(n-1)²-2an-2a(n-1)=0[an+a(n-1)][an-a(n-1)]-2[an+a(n-1)]=0
[an+a(n-1)][an-a(n-1)-2]=0an>0,an+a(n-1)恆》0,因此只有an-a(n-1)-2=0
an-a(n-1)=2,為定值
數列是以2為公差的等差數列。
設sn為數列{an}的前n項和,已知an>0,且an^2+2an=4sn+3 求:(1)數列{an
5樓:匿名使用者
(1)根據an^2+2an=4sn+3有:
a(n+1)^2+2a(n+1)=4s(n+1)+3於是an^2+2an = a(n+1)^2+2a(n+1)-4a(n+1)=a(n+1)^2-2a(n+1)
(an+1)^2 = [a(n+1)-1]^2化簡得到
a(n+1) = -an
a(n+1) = an +2
因為an>0,所以只有
a(n+1) = an+2 滿足要求,也就是他是等差數列又因為n=1時,a1^2 +2a1 = 4a1+3,a1 = 1an = 1 + 2(n-1)=2n-1
(2)bn = 1/(2n-1)(2n+1) = 0.5 *[1/(2n-1) -1/(2n+1)]
sbn = b1 + b2 +....+bn= 0.5(1/1-1/3) + 0.5(1/3-1/5) +....+0.5[1/(2n-1) -1/(2n+1)]
=0.5-0.5/(2n+1)
sn為{an}的前n項和,已知an>0. an^2+2an=4sn+3 (1)求{an}的通項公式;
6樓:張春會律師
根據an^2+2an=4sn+3有:
a(n+1)^2+2a(n+1)=4s(n+1)+3於是an^2+2an = a(n+1)^2+2a(n+1)-4a(n+1)=a(n+1)^2-2a(n+1)
(an+1)^2 = [a(n+1)-1]^2化簡得到
a(n+1) = -an
a(n+1) = an +2
因為an>0,所以只有
a(n+1) = an+2 滿足要求,也就是他是等差數列又因為n=1時,a1^2 +2a1 = 4a1+3,a1 = 1an = 1 + 2(n-1)=2n-1
(2)bn = 1/(2n-1)(2n+1) = 0.5 *[1/(2n-1) -1/(2n+1)]
sbn = b1 + b2 +....+bn= 0.5(1/1-1/3) + 0.5(1/3-1/5) +....+0.5[1/(2n-1) -1/(2n+1)]
=0.5-0.5/(2n+1)
希望能幫到你
sn為數列{an}的前n項和,已知an>0,且an^2+an=4sn+3。求an通項公式。
7樓:范進
4sn=an^2+2an-3 4s1=a1^2+2a1-3 a1=1
4sn-1=an-1^2+2an-1-3
4an=an^2-an-1^2+2an-2an-1an^2-an-1^2-2an-2an-1=0(an+an-1)(an-an-1-2)=0an=an-1+2 an=1+(n-1)*2=2n-1
已知數列{an}的各項均為整數,是數列{an}的前n項和,且4sn=an^2+2an-3
8樓:匿名使用者
4sn=an^2+2an-3,n=1,有sn=a1,得a1=3或-1,以同樣的方法求a2,得出a1=-1是不合題意的,a2=5或-3,同樣a2=-3是不合題意的,則得出a1=3,a2=5,那a3=8,a4=16,a5=32,a6=64,an=2^n(n要大於等於3)問題2不能理解!已知bn=2^2?那麼bn不就是4嗎?
還有啥好解!
9樓:匿名使用者
^^4sn=an^2+2an-34s(n-1)=a(n-1)^2+2a(n-1)-34an=an^2+2an-a(n-1)^2-2a(n-1)an^2-2an-a(n-1)^2-2a(n-1)=0an^2-a(n-1)^=2(an+a(n-1)(an+a(n-1)(an-(an-1)=2(an+a(n-1)an-a(n-1)=2可知該數列是公差為2的等差數列。4sn=an^2+2an-3=4*(a1+an)n/2an^2+2an-3=2n(a1+an)an^2+2an-3=2n*a1+2n*anan^2+(2-2n)an-2n*a1-3=0(a1+2(n-1))^2+(2-2n)(a1+2(n-1))-2n*a1-3=0a1^2+4(n-1)*a1+4(n-1)^2-2(n-1)*a1-4(n-1)^2-2n*a1-3=0a1^2+2(n-1)*a1-2n*a1-3=0a1^2+2n*a1-2a1-2n*a1-3=0a1^2-2a1+1=4(a1-1)^2=4a1-1=2a1=3或a1-1=-2a1=-1an=3+2(n-1)=3+2n-2=2n+1或an=-1+2(n-1)=-1+2n-2=2n-3tn=2^2(3+3+2(n-1))n/2=2n(4+2n)=4n^2+8n或tn=2^2(-1-1+2(n-1)n/2=2n(2n-4)=4n^2-8n
已知Sn為數列an的前n項和,且有a11,Sn1a
當n 1時,a2 s1 1 a1 1 2,1分 當n 2時,sn 1 an 1,sn 1 1 an,兩式相減得an 1 2an,2分 又a2 2a1,是首項為1,公比為2的等比數列,an n?1 4分 由 知a n n?1,b n n4an n4?n?1 nn 1,t n 1 2 3 n n 1,1...
已知數列an的前n項和為sn,數列sn 1是公比為
解 數列是公比為2的等比數列 s n 1 2 n 1 s1 1 2 n 1 a1 1 s n 1 1 2 n 2 a1 1 得 an 2 n 2 a1 1 n 2 a2 a1 1 a3 2 a1 1 a2是a1和a3的等比中項,故 a2 2 a1a3 a1 1 2 a1 2 a1 1 解得a1 1 ...
設數列an的前n項和為Sn,已知a1 1,Sn nan n 1 n
1.sn nan n 1 n s n 1 n 1 a n 1 n 2 n 1 sn s n 1 an nan n 1 n n 1 a n 1 n 2 n 1 所以,nan n 1 n n 1 a n 1 n 2 n 1 an 0 化簡,n 1 an a n 1 n 1 n 2 n 0等式兩邊同時除以...