商f x deltax f x deltax與x有關嗎 當deltax無限接近0時,x是否改

2021-08-18 16:02:14 字數 3860 閱讀 9983

1樓:匿名使用者

導數(derivative)是微積分中的重要基礎概念。當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。在一個函式存在導數時,稱這個函式可導或者可微分。

可導的函式一定連續。不連續的函式一定不可導。導數實質上就是一個求極限的過程,導數的四則運演算法則**於極限的四則運演算法則。

亦名紀數、微商,由速度變化問題和曲線的切線問題而抽象出來的數學概念。又稱變化率。

如一輛汽車在10小時內走了 600千米,它的平均速度是60千米/小時,但在實際行駛過程中,是有快慢變化的,不都是60千米/小時。為了較好地反映汽車在行駛過程中的快慢變化情況,可以縮短時間間隔,設汽車所在位置s與時間t的關係為s=f(t),那麼汽車在由時刻t0變到t1這段時間內的平均速度是[f(t1)-f(t0)]/[t1-t0],當 t1與t0很接近時,汽車行駛的快慢變化就不會很大,平均速度就能較好地反映汽車在t0 到 t1這段時間內的運動變化情況 ,自然就把極限[f(t1)-f(t0)]/[t1-t0] 作為汽車在時刻t0的瞬時速度,這就是通常所說的速度。一般地,假設一元函式 y=f(x )在 x0點的附近(x0-a ,x0 +a)內有定義,當自變數的增量δx= x-x0→0時函式增量 δy=f(x)- f(x0)與自變數增量之比的極限存在且有限,就說函式f在x0點可導,稱之為f在x0點的導數(或變化率)。

若函式f在區間i 的每一點都可導,便得到一個以i為定義域的新函式,記作 f',稱之為f的導函式,簡稱為導數。函式y=f(x)在x0點的導數f'(x0)的幾何意義:表示曲線l 在p0〔x0,f(x0)〕 點的切線斜率。

一般地,我們得出用函式的導數來判斷函式的增減性的法則:設y=f(x )在(a,b)內可導。如果在(a,b)內,f'(x)>0,則f(x)在這個區間是單調增加的。。

如果在(a,b)內,f'(x)<0,則f(x)在這個區間是單調減小的。所以,當f'(x)=0時,y=f(x )有極大值或極小值,極大值中最大者是最大值,極小值中最小者是最小值。

導數的幾何意義是該函式曲線在這一點上的切線斜率。

(1)求函式y=f(x)在x0處導數的步驟:

① 求函式的增量δy=f(x0+δx)-f(x0)

② 求平均變化率

③ 取極限,得導數。

(2)幾種常見函式的導數公式:

① c'=0(c為常數函式);

② (x^n)'= nx^(n-1) (n∈q);

③ (sinx)' = cosx;

④ (cosx)' = - sinx;

⑤ (e^x)' = e^x;

⑥ (a^x)' = a^xlna (ln為自然對數)

⑦ (inx)' = 1/x(ln為自然對數)

⑧ (logax)' =(xlna)^(-1),(a>0且a不等於1)

補充一下。上面的公式是不可以代常數進去的,只能代函式,新學導數的人往往忽略這一點,造成歧義,要多加註意。

(3)導數的四則運演算法則:

①(u±v)'=u'±v'

②(uv)'=u'v+uv'

③(u/v)'=(u'v-uv')/ v^2

(4)複合函式的導數

複合函式對自變數的導數,等於已知函式對中間變數的導數,乘以中間變數對自變數的導數--稱為鏈式法則。

導數是微積分的一個重要的支柱。牛頓及萊布尼茨對此做出了卓越的貢獻!

導數的應用

1.函式的單調性

(1)利用導數的符號判斷函式的增減性

利用導數的符號判斷函式的增減性,這是導數幾何意義在研究曲線變化規律時的一個應用,它充分體現了數形結合的思想.

一般地,在某個區間(a,b)內,如果>0,那麼函式y=f(x)在這個區間內單調遞增;如果<0,那麼函式y=f(x)在這個區間內單調遞減.

如果在某個區間內恆有=0,則f(x)是常函式.

注意:在某個區間內,>0是f(x)在此區間上為增函式的充分條件,而不是必要條件,如f(x)=x3在內是增函式,但.

(2)求函式單調區間的步驟

①確定f(x)的定義域;

②求導數;

③由(或)解出相應的x的範圍.當f'(x)>0時,f(x)在相應區間上是增函式;當f'(x)<0時,f(x)在相應區間上是減函式.

2.函式的極值

(1)函式的極值的判定

①如果在兩側符號相同,則不是f(x)的極值點;

②如果在附近的左側,右側,那麼,是極大值或極小值.

3.求函式極值的步驟

①確定函式的定義域;

②求導數;

③在定義域內求出所有的駐點,即求方程及的所有實根;

④檢查在駐點左右的符號,如果左正右負,那麼f(x)在這個根處取得極大值;如果左負右正,那麼f(x)在這個根處取得極小值.

4.函式的最值

(1)如果f(x)在〔a,b〕上的最大值(或最小值)是在(a,b)內一點處取得的,顯然這個最大值(或最小值)同時是個極大值(或極小值),它是f(x)在(a,b)內所有的極大值(或極小值)中最大的(或最小的),但是最值也可能在〔a,b〕的端點a或b處取得,極值與最值是兩個不同的概念.

(2)求f(x)在[a,b]上的最大值與最小值的步驟

①求f(x)在(a,b)內的極值;

②將f(x)的各極值與f(a),f(b)比較,其中最大的一個是最大值,最小的一個是最小值.

5.生活中的優化問題

生活中經常遇到求利潤最大、用料最省、效率最高等問題,這些問題稱為優化問題,優化問題也稱為最值問題.解決這些問題具有非常現實的意義.這些問題通常可以轉化為數學中的函式問題,進而轉化為求函式的最大(小)值問題

2樓:

當然有關這個就是x點導數概念

關於函式y=f(x)有f'(x0)=1/2,則當delt x趨向於0時,f(x)在點x=x0處的微分dy是?a與delta等價的無窮小, 20

3樓:瑞春楓

與△x同階的無窮小

dy=f'(x0)△x

所以dy/△x=f'(x0)

即與△x同階的無窮小

dy/△x=f'(x0) 左邊兩個無窮小的比的極限=右邊=1/2,根據無窮小的比較,可知兩個無窮小是同階無窮小。

函式的由來

中文數學書上使用的“函式”一詞是轉譯詞。是我國清代數學家李善蘭在翻譯《代數學》(2023年)一書時,把“function”譯成“函式”的。

中國古代“函”字與“含”字通用,都有著“包含”的意思。李善蘭給出的定義是:“凡式中含天,為天之函式。

”中國古代用天、地、人、物4個字來表示4個不同的未知數或變數。這個定義的含義是:“凡是公式中含有變數x,則該式子叫做x的函式。

”所以“函式”是指公式裡含有變數的意思。我們所說的方程的確切定義是指含有未知數的等式。但是方程一詞在我國早期的數學專著《九章算術》中,意思指的是包含多個未知量的聯立一次方程,即所說的線性方程組。

4樓:墨汁諾

a=-1,x=1/2成立 2.a>-1

y=(1+a)x^2+2x+a 與x軸點為正數 -2/(1+a)>0,delt>=0

y(0)>0 這是利用函式影象的方法,將方程的解視為與x軸的交點,當開口向上時,-2/(1+a)>0表示二次函式的對稱軸在x正半軸。

x^2+xy+y^2=9

這樣寫9=x^2+xy+y^2

由基本不等式

≤x^2+y^2+(x^2+y^2)/2

=3/2(x^2+y^2)

所以x^2+y^2≥6

5樓:匿名使用者

dy = (1/2)dx , 與 △x 是同階無窮小,但不是等價無窮小。

微積分裡,dx=deltax嗎

6樓:匿名使用者

不一樣的,△x就是表示自變數x的一個變化值,比如從1變到2,那麼△x=1,而dx表示當△x趨近於0的時候的一個微元的長度。不懂可追問。

你好,能幫我解釋下生產商 出品商,經銷商,監製商是怎麼定義的

我用商品為中心介紹著幾個概念 一 生產商 又叫製造商製造該商品的廠家 經銷商 替製造商賣這種商品的單位,監製商 你創造是概念,就是對製造商是商品製造過程進行 監督的人 出品商屬於產品商標所有的,製造商替出品商製造商品。一般來說製造商是出品商的子公司。出品是版權,或者配方,或者技術,或者品牌方面的 這...

名片電商和電商有區別嗎,名片電商和傳統電商有什麼區別?

除了電商的功能,還自帶名片內容吧。還是基於名片,賦予了電商功能,主次回反正是不知道,但知道包答含了兩個內容就是了。而且,每張名片有不同的職位層級,每個層級是能給到不同的優惠力度的。這麼說來,購買產品我都去找ceo的名片下單好啦 哈哈 名片電商和傳統電商有什麼區別?名片電商是什麼,有什麼作用?50 忽...

跨境微商是什麼?跨境電商和微商的區別

跨境指的就是境外 國外 的產品。跨境微商就是指做國外產品的微商。中國跨境電商比較有代表的就是 天貓國際 和 網易考拉 1 首先做跨境電商,那麼要確定好自己是做進口還是出口業務,這兩個性質是不同的。2 確定了明確的業務方向,然後就是需要了解該項業務的全部流程,明白該流程下需要的資金情況。3 做好充分的...