1樓:養夜卉戎濡
看這些物件能否用共同的某些性質來描述,而且一定是能用來衡量物件是否屬於這個集合,如若不能用來判斷,就不能。
例如1、某個屋子裡只有幾把椅子,幾張桌子,還有幾個人,雖然物件有人有物,但備裂他們也可以構成乙個集合,這些物件可用「某個屋子裡的所有人或物」描述,他們的共同性質是「某畢滾拿個屋子裡的」
2、「某班的所有高個子學生」就不能用來作為描述集合元素的性質,換句話說「某班的所有高個子學生」不能構成集合。因為「高個子」是形容詞,不能用來做判斷標準,試想,多高算「高個子」呢?給你指出乙個手搭人來,你能判定她屬於這個集合?
其實不是集合)
3、「某班身高高於1公尺8的學生」,就能構成乙個集合,哪怕這個班裡沒有高於1公尺8的學生,照樣也是集合,因為「1公尺8」這條性質能夠用來判斷乙個學生是否在此集合內。
你的,明白了嗎?
2樓:愈靜嫻譚柳
集合必須滿足的條件:
1,確定性。
2,互異吵銀性。
3,無序性。
具體解釋:確定性。
就是某乙個元素。
要麼它是屬於這個集合,要麼不屬於這個集合,不會出現可能屬於又可能不屬於這個集合的情況。舉例,比如集合{x|x>1}
2就屬於這個集合,而0就不是這個集合中的元素。
再比如{非常高的人}這就不是集合,因為到底180cm高的人屬於不屬於這個集合,這也很難說。
這就是確定性。
互慧判異性。
就是說公升碧宴集合中的元素不能是重複的,集合中的相同元素只能算是乙個。比如方程x²-2x+1=0的兩個根式x1=x2=1,不能記作集合,應記為集合。
無序性。集合中的元素是不分順序的,和代表的是同乙個集合。
滿足以上三點的物件就能構成乙個集合。
希望能幫到你o(∩_o哈哈~如有疑問歡迎追問。如果滿意謝謝哦o(∩_o~
下列物件能構成集合的是?
3樓:網友
確切指定的元素構成的一組事物,叫做乙個集合。
集合是指具有某種特定性質的具體的或抽象的物件彙總而成的集體。其中,構成集合的這些物件則稱為該集合的元素。
例如,全中國人的集合,它的元素就是每一箇中國人。通常用大寫字母如a,b,s,t,..表示集合,而用小寫字母如a,b,x,y,..
表示集合的元棚掘旦素。若x是集合s的元素,則稱x屬於s,記為x∈s。若y不是集合s的元素,則稱y不屬於s,記為y∉s。
集合中元素的數目稱為集合的基數,集合a的基數記作card(a)。當其為有限大時,集合a稱為有限集,反之則為無限集。一般的,把含有有限個元素的集合叫做有限集,含無限個元素的集合叫做無限集。
當鏈擾集合基數為零時,則叫做空集。
空集是任意乙個非空集合的真子集。
空集是任何乙個集合的子散此集。
希望我能幫助你解疑釋惑。
4樓:網友
構成集合的三要素:
1)確定性,2)無序性,吵知。
3)不重複性,選b(能構成集合φ)
a,c,d元素不確定模碰族性旦弊,不能構成集合。
5樓:友緣花哥
第一題選b第二題看不見選項,只能告訴:①④正確。
如何判斷兩個集合是不是乙個集合?
6樓:網友
任何乙個 邏輯判定問題 都可以劃分為集合 形式,看 兩個集合 誰大,誰小,誰包含誰。如果兩個集合是乙個集合,就是充分必要條件。
判定手法:小集合一定能推出大集合而大集合未必推得出小集合。 即 a包含b , 則滿足 b 一定推導的出滿足a。
舉個例子:p>0 , p>1。 兩個集合,顯然在座標軸上可以畫出,p>0 是個大集合。
2 在 p>1中,顯然也在p>0中。 而就呵呵畢鋒一笑,說自己顯然在p>0中,而非在p>1裡面。 這麼梳理,為的是理清思路,舉一反三。
然後我們推導一下:
簡單的一眼看出,問題是處棚扮理複雜的。
不如設 n=k(sn/n) (k≠0)
這個是共鏈數灶線人之常情,不必在意這些細節。
推出 sn=1/k *n²
顯然,這個是乙個特殊的 等差數列。也就是首項是0的等差數列。很顯然,是個等差特例。是個小範圍噻。
等差數列的充分必要條件,顯然是 比等差數列更大的乙個範圍。更大的乙個集合。
所以 前者是後者的 必要不充分條件。
如何判斷是否為集合?
7樓:覀覀覀瓜瓜瓜
1、確定性。
2、互異性。
3、無序性。
4、純粹性。
簡介:集合(簡稱集)是 數學中乙個基本概念,它是 集合論的研究物件,集合論的基本理論直到19世紀才被創立。最簡單的說法,即是在最原始的集合論—— 樸素集合論中的定義,集合就是「確定的一堆東西」。
集合裡的「東西」,叫作元素。由乙個或多個確定的元素所構成的整體叫做集合。若 x是集合 a的 元素,則記作 x ∈ a。
集合中的元素有三個特徵:1.確定性(集合中的元素必須是確定的) 2.
互異性(集合中的元素互不相同。例如:集合a=,則a不能等於1) 3.
無序性(集合中的元素沒有先後之分),如集合和算作同乙個集合。
8樓:5q雙魚
有屬於關係,有元素。有包含關係。集合元素:1.確定性2.互異性3.無序性。
如何判斷兩個集合的關係?
9樓:小qiong說生活
a⊇。是包含於符號:a包含於b-則a為b的子集或等於b。
是包含符號:a包含b-則b為a的子集或等於a。
真包含:a真包含於b-則a為b的真子集,若b=,則a=或或空集。
用定義判斷兩個集合是否相等
10樓:富微蘭始橋
集合是無序。
的,並且包含唯一。
項。因為集合是無序的,所以集合中的元素可以按任何順序列出。也就是說,陸隱銀集合。
和。被認為是相等的。同時,集合中的任意重複都被認為是多餘的。集合。
和集合。是相等的。如果早宴兩個集合有相同的元素,那麼它們是相等的。(相等用。
符號表示;如果。s和。
t是相等的,攜拆那麼把它們寫成。st。)
11樓:系儉佴綾
a≠ba
x丨x=kπ/2
k∈z}{x丨x=(2k
k∈z}b={x丨x=kπ/4
k∈z}{x丨x=(k
k∈z},當k∈z時,(2k
表示所有的π的奇數倍,(k
表示所有的π的整數倍,a中每乙個元素都是b的元素,而b中的2π/4=π/2不屬於a,a真包含於b.
做此類題時,先看清集合的代表元素是什麼,在從形式上液頌棗把櫻老x的表示儘量統一,觀察k的取值及相應的x的取值,有乙個相對容易理解的方法,就是換成列舉法表示。
如本題中,a=,b=,a是b的真子集。
直角座標系內第一象限的一些點能否構成集合,為什麼
直角座標系內第一象限的所有點能構成一個集合,如果是直角座標系內第一象限的一些點,可以根據條件,對x,y的範圍進一步限制。特點第一象限中的點的橫座標大於0,縱座標也大於0。在數軸上0點處再加一條垂直直線,就成了一個笛卡兒座標圖,右上角那一塊區域稱為第一象限,上面左邊那一塊為第二象限,第二象限的下面為第...
怎樣忘記人,一些事,怎樣忘記一個人,一些事?
忘記一個人要麼需要時間,要麼需要新歡 人的一生總有潮起潮落,不可能時時處於風口浪塵上。我們不必因為以前做過一些蠢事而耿耿於懷,或是千方百計將其忘記。不斷地譴責自己將會失去前進的動力,努力地尋求忘記反而會形成難以磨滅的記憶,不要很刻意的去忘記一些事 很簡單,是男女朋友的話,男的去再找個女朋友女在去找個...
怎樣判斷男生是否真的愛你,怎樣判斷一個男人是否真的愛你呢?
不是看他平時送了多少禮物,而是生氣的時候是怎麼做的 真正愛你的男孩,一下子說不出真正愛你的理由,只知道自己顧不上注意別人 真正愛你的男孩,其實總惹你生氣,卻發覺不了他到底做錯了什麼。真正愛你的男孩,很少當面讚美你,可是心裡肯定你是他最棒的。真正愛你的男孩,會在你忘記回覆他簡訊時狠狠的說你一頓。真正愛...