1樓:匿名使用者
首先從右向左看1的位置抄w,然後計算得出2的w-1次方的值z,將所有z值相加,就是這個2進位制數對應的十進位制數。
舉例:1010,從右至左,第2位和第4位是1,則,z值分別為2的2-1次方和2的4-1次方,求和為10,就是對應的十進位制數。
再舉例,101,從右至左,第1位和第3位是1,則對應的z值為2的1-1次方和2的3-1次方,求和為5。
2樓:匿名使用者
1010b=1*2^3+0*2^2+1*2^1+0*2^0=10
101b=1*2^2+0*2^1+1*2^0=5
3樓:小
按權相加,用秦九韶優化
將二進位制數101010、1011001.101轉換成十進位制數、十六進位制數、八進位制數和8421bc
4樓:匿名使用者
101010b=0010 1010 b=2ah=2*16^1+10*16^0=32+10=42d=0100 0010 bcd
101010b=101 010 b=52o1011001.101b=0101 1001 . 1010 b=59.
ah=5*16^1+9*16^0+10*16^(-1)=89.625d=1000 1001 . 0110 0010 0101 bcd
1011001.101b=001 011 001 . 101 b=131.5o
二進位制數如何轉換成十進位制數?
5樓:會飛的小兔子
二進位制數轉換成十進位制數的方法如下:
1、正整數轉成二進位制,除二取餘,然後倒序排列,高位補零。將正的十進位制數除以二,得到的商再除以二,依次類推知道商為零或一時為止,然後在旁邊標出各步的餘數,最後倒著寫出來,高位補零就可以。
2、42除以2得到的餘數分別為010101,然後倒著排一下,42所對應二進位制就是101010。
3、計算機內部表示數的位元組單位是定長的,如8位,16位,或32位。所以,位數不夠時,高位補零,所說,如圖3所示,42轉換成二進位制以後就是。00101010,也即規範的寫法為(42)10=(00101010)2。
4、負整數轉換成二進位制方法:先是將對應的正整數轉換成二進位制後,對二進位制取反,然後對結果再加一。還以42為例,負整數就是-42,如圖4所示為方法解釋。
最後即為:(-42)10=(11010110)2。
5、小數轉換為二進位制的方法:對小數點以後的數乘以2,取結果的整數部分(不是1就是0嘍),然後再用小數部分再乘以2,再取結果的整數部分……以此類推,直到小數部分為0或者位數已經夠了。然後把取的整數部分按先後次序排列,就構成了二進位制小數部分的序列。
6、 如果小數的整數部分有大於0的整數時該如何轉換呢?如以上整數轉換成二進位制,小數轉換成二進位制,然後加在一起。
7、整數二進位制轉換為十進位制:首先將二進位制數補齊位數,首位如果是0就代表是正整數,如果首位是1則代表是負整數。先看首位是0的正整數,補齊位數以後,將二進位制中的位數分別將下邊對應的值相乘,然後相加得到的就為十進位制,比如1010轉換為十進位制。
8、若二進位制補足位數後首位為1時,就需要先取反再換算:例如,11101011,首位為1,那麼就先取反吧:-00010100,然後算一下10100對應的十進位制為20,所以對應的十進位制為-20。
9、將有小數的二進位制轉換為十進位制時:例如0.1101轉換為十進位制的方法:
將二進位制中的四位數分別於下邊對應的值相乘後相加得到的值即為換算後的十進位制,這樣二進位制數轉換成十進位制數的問題就解決了。
6樓:當年明月
就是是第幾位就乘以2的幾次方 從右往左數
二進位制轉十進位制
從最後一位開始算,依次列為第0、1、2...位第n位的數(0或1)乘以2的n次方
得到的結果相加就是答案
例如:01101011.轉十進位制:
第0位:1乘2的0次方=1
1乘2的1次方=2
0乘2的2次方=0
1乘2的3次方=8
0乘2的4次方=0
1乘2的5次方=32
1乘2的6次方=64
0乘2的7次方=0
然後:1+2+0
+8+0+32+64+0=107.
二進位制01101011=十進位制107
二進位制有兩個特點:它由兩個數碼0,1組成,二進位制數運算規律是逢二進一。
為區別於其它進位制,二進位制數的書寫通常在數的右下方註上基數2,或加後面加b表示,其中b是英文二進位制binary的首字母。
二進位制具有以下優點:
1) 二進位制數中只有兩個數碼0和1,可用具有兩個不同穩定狀態的元器件來表示一位數碼。例如,電路中某一通路的電流的有無,某一節點電壓的高低,電晶體的導通和截止等。
2) 二進位制數運算簡單,大大簡化了計算中運算部件的結構。
7樓:center丿
06如何快速的將二進位制轉換成十進位制
8樓:匿名使用者
我們知道二進
制是逢二進一的,也就是二進位制的1就是十進位制的1,當二進位制的1加上1時,它就進位了,變成了10,也就是說:
1是一個1
10是兩個1就是一個2
100是10*10即兩個2相乘
1000是10*10*10即三個2相乘。、下面奉上我剛畫的圖示,希望對你有所幫助:
9樓:匿名使用者
只要把那件事事加上一個時間數就可以健身熟件數了掙錢了
10樓:匿名使用者
(1)二進
制轉換為十進位制
將每個二進位制數按權後求和即可。請看例題:
把二進位制數(101.101)2=1*22+0*21+1*20+1*2-1+0*2-2+1*2-3=(5.625)10
(2)十進位制轉換為二進位制
一般需要將十進位制數的整數部分與小數部分分開處理。
整數部分計算方法:除2取餘法 請看例題:
十進位制數(53)10的二進位制值為(110101)2小數部分計算方法:乘2取整法,即每一步將十進位制小數部分乘以2,所得積的小數點左邊的數字(0或1)作為二進位制表示法中的數字,第一次乘法所得的整數部分為最高位。請看例題:
將(0.5125)10轉換成二進位制。(0.5125)10=(0.101)2
11樓:鳳艾完顏聽露
根據兩個不同的進位制之間的關係,寫出把二進位制轉化成十進位制以後的表示式,即讓二進位制的個位乘以,向前和向後只有的指數變化,做法類似,最後相加得到結果.
解:由題意知二進位制數對應的十進位制是
.故答案為:.
本題考查進位制之間的關係,本題解題的關鍵是理解兩者之間的轉化到依據,本題是一個基礎題.
將下列二進位制數化成十進位制數 101010(2) 110011(2) 101101(2) 100001(2) 將下列十進位制數化成二進位制
12樓:匿名使用者
二進位制化成十進位制 是從後往前 按照2^0+2^1+……此時 比如第一個101010就是0+2^1+0+2^3+0+2^5=42 也就是說 二進位制版
為零的直接加0為一的就有權數字 按照從後往前數數 0 1 2 4 5……n 然後是加上2^n 再比如第二個110011就是2^0+2^1+0+0+2^4+2^5=51 至於十進位制轉換成二進位制 也就是倒著來 自己琢磨一下就知道了 呵呵 希望對你有用
13樓:匿名使用者
^101010十進位制是來42
110011十進位制是51,101101十進位制是45,自100001是33,看來你得學學換算,
就是加權演算法,從後向前為1,2,4,8,16,32,即2^0=1,2^1=2,2^2=4.2^3=8^……
14樓:倒黴熊
1: 42 51 45 33
2:11010 11111 111111 101101
將二進位制數1001110012轉換為八進位制數保留
二進位制轉換成八進位制,是三位二進位制轉換成一位八進位制。整數部分是整數部分,小數部分是小數部分 1001.11001 也就是001001.110010 整數部分不夠三的倍數在前面新增0 這樣不改變這個數 小數部分則是在後面新增0.001 001 110 0101 1 6 2 所以結果為 11.62...
將172 16 20 55轉換為二進位制格式,要步驟,非常感謝
ip地址在計算機中是以一個32位的二進位制數進行儲存。172 10,16 10,20 10,55 10 ac 16,10 16,14 16,37 16 將每個十進位制數除以16求商數和餘數,按十六進位制數轉換即可 1001 1011 2,0001 0000 2,0001 0100 2,0011 01...
將二進位制數11012轉換為十進位制數是多少
1101 最右邊的是2的0次方依次2的1次方,2的2次方,2的三次方 也就是8 4 0 1 13 1101 1 2 3 1 2 2 0 2 1 13 將二進位制數1101 2 轉換為十進位制數是多少 11。1011 1 2 4 1 0 2 3 1 1 2 2 1 1 2 1 1 即2 3 2 1 2...