帶符號的8位2進位制數為什麼最小是

2021-03-06 03:51:56 字數 6149 閱讀 4176

1樓:匿名使用者

+0的補碼就是其原碼,也就是說是0000 0000而已(對於8位來說)。

-0的補碼是其反碼加1,其反碼是1111 1111,當然,其反碼加1後就是溢位一個進位後,仍然是0000 0000。

所以0和-0的補碼都是0000 0000

根據補碼原則,0000 0000表示0,而1000 0000卻不能表示-0,所以根據原則可知,-1000 0000表示的是-128。

這就是為什麼8位帶符號數的範圍是-128~127之間了。

其實就是1000 0000表示誰呢,誰也表示不了,那就用來表示-128吧,所以8位2進位制數最小-128。

2樓:高金山

樓上的說(估計是copy過來的),這麼多,我估計樓主也不明白!

我給你簡單講一下吧:

7位2進位制數000 0000的值為0,那麼,它前面加上0,還表示0吧?

那好,如果它前面加上1呢,仍然表示0?這不是重複了麼?

一個0,怎麼用兩個值來表示呢?

所以1000 0000就表示-128啦

3樓:匿名使用者

1、在計算機系統中,數值一律用補碼來表示(儲存)。

主要原因:使用補碼,可以將符號位和其它位統一處理;同時,減法也可按加法來處理。另外,兩個用補

碼錶示的數相加時,如果最高位(符號位)有進位,則進位被捨棄。

2、補碼與原碼的轉換過程幾乎是相同的。

數值的補碼錶示也分兩種情況:

(1)正數的補碼:與原碼相同。

例如,+9的補碼是00001001。

(2)負數的補碼:符號位為1,其餘位為該數絕對值的原碼按位取反;然後整個數加1。

例如,-7的補碼:因為是負數,則符號位為「1」,整個為10000111;其餘7位為-7的絕對值+7的原碼

0000111按位取反為1111000;再加1,所以-7的補碼是11111001。

已知一個數的補碼,求原碼的操作分兩種情況:

(1)如果補碼的符號位為「0」,表示是一個正數,所以補碼就是該數的原碼。

(2)如果補碼的符號位為「1」,表示是一個負數,求原碼的操作可以是:符號位為1,其餘各位取

反,然後再整個數加1。

例如,已知一個補碼為11111001,則原碼是10000111(-7):因為符號位為「1」,表示是一個負

數,所以該位不變,仍為「1」;其餘7位1111001取反後為0000110;再加1,所以是10000111。

在「閒扯原碼、反碼、補碼」檔案中,沒有提到一個很重要的概念「模」。我在這裡稍微介紹一下「模」

的概念:

「模」是指一個計量系統的計數範圍。如時鐘等。計算機也可以看成一個計量機器,它也有一個計量範

圍,即都存在一個「模」。例如:

時鐘的計量範圍是0~11,模=12。

表示n位的計算機計量範圍是0~2(n)-1,模=2(n)。【注:n表示指數】

「模」實質上是計量器產生「溢位」的量,它的值在計量器上表示不出來,計量器上只能表示出模的

餘數。任何有模的計量器,均可化減法為加法運算。

例如: 假設當前時針指向10點,而準確時間是6點,調整時間可有以下兩種撥法:

一種是倒撥4小時,即:10-4=6

另一種是順撥8小時:10+8=12+6=6

在以12模的系統中,加8和減4效果是一樣的,因此凡是減4運算,都可以用加8來代替。

對「模」而言,8和4互為補數。實際上以12模的系統中,11和1,10和2,9和3,7和5,6和6都有這個特

性。共同的特點是兩者相加等於模。

對於計算機,其概念和方法完全一樣。n位計算機,設n=8, 所能表示的最大數是11111111,若再

加1稱為100000000(9位),但因只有8位,最高位1自然丟失。又回了00000000,所以8位二進位制系統的

模為2(8)。 在這樣的系統中減法問題也可以化成加法問題,只需把減數用相應的補數表示就可以

了。把補數用到計算機對數的處理上,就是補碼。

另外兩個概念

一的補碼(one's ***plement) 指的是正數=原碼,負數=反碼

而二的補碼(two's ***plement) 指的就是通常所指的補碼。

這裡補充補碼的代數解釋:

任何一個數都可以表示為-a=2^(n-1)-2^(n-1)-a;

這個假設a為正數,那麼-a就是負數。而根據二進位制轉十進位制數的方法,我們可以把a表示為:a=k0*2^0+k1*2^1+k2*2^2+……+k(n-2)*2^(n-2)

這裡k0,k1,k2,k(n-2)是1或者0,而且這裡設a的二進位制位數為n位,即其模為2^(n-1),而2^(n-1)其二項是:1+2^0+2^1+2^2+……+2^(n-2),而式子:-a=2^(n-1)-2^(n-1)-a中,2^(n-1)-a代入a=k0*2^0+k1*2^1+k2*2^2+……+k(n-2)*2^(n-2)和2^(n-1)=1+2^0+2^1+2^2+……+2^(n-2)兩式,2^(n-1)-a=(1-k(n-2))*2^(n-2)+(1-k(n-3))*2^(n-3)+……+(1-k2)*2^2+(1-k1)*2^1+(1-k0)*2^0+1,而這步轉化正是取反再加1的規則的代數原理所在。

因為這裡k0,k1,k2,k3……不是0就是1,所以1-k0,1-k1,1-k2的運算就是二進位制下的取反,而為什麼要加1,追溯起來就是2^(n-1)的二項式最後還有一項1的緣故。而-a=2^(n-1)-2^(n-1)-a中,還有-2^(n-1)這項未解釋,這項就是補碼裡首位的1,首位1在轉化為十進位制時要乘上2^(n-1),這正是n位二進位制的模。

不能貼公式,所以看起來很麻煩,如果寫成代數式子看起來是很方便的。

注:n位二進位制,最高位為符號位,因此表示的數值範圍-2^(n-1) ——2^(n-1) -1,所以模為2^(n-1)。上面提到的8位二進位制模為2^8是因為最高位非符號位,表示的數值範圍為0——2^8-1。

4樓:匿名使用者

樓上得 得補充說明下

2進位制正負 計算機硬體得判斷是用補碼

這個補碼是為了方便計算

至於怎麼用 你不需要明白,就不做解釋了

這個取補

給你說明下

010101==21是個整數吧

他的負數就是他的補碼

就是全部取反(能明白嗎? 上面那個就變成101010)然後在+1

但是因為同時出現1000000 和0000000兩個0 所以計算機認為1000000是-128得反補碼 也就是樓上得那個意思

我就是給樓上補充下呵呵

這個補碼

要不怕你看不懂

為什麼8位二進位制的補碼取值範圍是-128~127

5樓:匿名使用者

八位二進位制正數的補碼範圍是0000 0000 ~ 0111 1111 即0 ~ 127,負數的補碼範圍是正數的原碼0000 0000 ~ 0111 1111 取反加一(也可以理解為負數1000 0000 ~ 1111 1111化為反碼末尾再加一)。

所以得到 1 0000 0000 ~ 1000 0001,1000 0001作為補碼,其原碼是1111 1111(-127),依次往前推,可得到-1的補碼為1111 1111,那麼補碼0000 0000的原碼是1000 0000符號位同時也可以看做數字位即表示-128,這也解釋了為什麼127(0111 1111)+1(0000 0001)=-128(1000 0000)。

在計算機中資料用補碼錶示,利用補碼統一了符號位與數值位的運算,同時解決了+0、-0問題,將空出來的二進位制原碼1000 0000表示為-128,這也符合自身邏輯意義的完整性。因此八位二進位制數表示範圍為-128~+127。

拓展資料:補碼的特性:

1、一個負整數(或原碼)與其補數(或補碼)相加,和為模。

2、對一個整數的補碼再求補碼,等於該整數自身。

3、補碼的正零與負零表示方法相同。

6樓:echo丶

首先八位二進位制數 0000 0000 ~1111 1111,一共可以表示 2^8=256 位數,如果表示無符號整數可以表示0~255。計算方法就是二進位制與十進位制之間的轉換。

如果想要表示有符號整數,就要將最前面一個二進位制位作為符號位,即0代表正數,1代表負數,後面7位為數值域,這就是原碼定義。這樣在現實生活中完全沒有問題,但在計算機中就出現了問題。

數的表示:

在原碼中,0的表示有兩種(+0)0000 0000、(-0)1000 0000,這樣就產生了編碼對映的不唯一性,在計算機上就要區分辨別。然而+0、-0卻沒有什麼現實意義。

數的運算:

為了解決上述數的表示問題,我們可以強制把轉換後的10000000強制認定為-128。但這又出現了一個新的問題就是數的運算。數學上,1+(-1)=0,而在二進位制中00000001+10000001=10000010,換算成十進位制為-2。

顯然出錯了。所以原碼的符號位不能直接參與運算,必須和其他位分開,這就增加了硬體的開銷和複雜性。

這個時候就要引入補碼,補碼錶示法規定:正數的補碼與其原碼相同;負數的補碼是在其反碼的末位加1。反碼定義為:正數的反碼與其原碼相同;負數的反碼是對其原碼逐位取反,但符號位除外。

但為什麼要引入補碼呢?

以及負數補碼定義為什麼是相對應的正數原碼取反加一?

一、為什麼要引入補碼?

先解決第一個問題,引入補碼是為了解決計算機中數的表示和數的運算問題,使用補碼,可以將符號位和數值域統一處理,即引用了模運算在數理上對符號位的自動處理,利用模的自動丟棄實現了符號位的自然處理,僅僅通過編碼的改變就可以在不更改機器物理架構的基礎上完成的預期的要求。

二、什麼是「模」?

模的概念可以幫助理解補數和補碼。

「模」是指一個計量系統的計數範圍。如時鐘等。計算機也可以看成一個計量機器,它也有一個計量範圍,即都存在一個「模」。

例如: 時鐘的計量範圍是0~11,模=12。表示n位的計算機計量範圍是0~2^(n)-1,模=2^(n)。

「模」實質上是計量器產生「溢位」的量,它的值在計量器上表示不出來,計量器上只能表示出模的餘數。任何有模的計量器,均可化減法為加法運算。例如:

假設當前時針指向10點,而準確時間是6點,調整時間可有以下兩種撥法:一種是倒撥4小時,即:10-4=6;另一種是順撥8小時:

10+8=12+6=6 在以12模的系統中,加8和減4效果是一樣的,因此凡是減4運算,都可以用加8來代替。對「模」而言,8和4互為補數。實際上以12模的系統中,11和1,10和2,9和3,7和5,6和6都有這個特性。

共同的特點是兩者相加等於模。

對於計算機,其概念和方法完全一樣。n位計算機,設n=8, 所能表示的最大數是11111111,若再加1成為100000000(9位),但因只有8位,最高位1自然丟失。又回了00000000,所以8位二進位制系統的模為2^8。

在這樣的系統中減法問題也可以化成加法問題,只需把減數用相應的補數表示就可以了。把補數用到計算機對數的處理上,就是補碼。

對一個正數的原碼取反加一,得到這個正數對應負數的補碼。例如~6=-7,而且加一之後會多出一個八進位制補碼1000 0000,而這個補碼就對應著原碼1000 0000,數字位同時當做符號位即-128。

根據以上內容我們就可以來解釋八位二進位制數的表示範圍:

八位二進位制正數的補碼範圍是0000 0000 ~ 0111 1111 即0 ~ 127,負數的補碼範圍是正數的原碼0000 0000 ~ 0111 1111 取反加一(也可以理解為負數1000 0000 ~ 1111 1111化為反碼末尾再加一);

所以得到 1 0000 0000 ~ 1000 0001,1000 0001作為補碼,其原碼是1111 1111(-127),依次往前推,可得到-1的補碼為1111 1111,那麼補碼0000 0000的原碼是1000 0000符號位同時也可以看做數字位即表示-128,這也解釋了為什麼127(0111 1111)+1(0000 0001)=-128(1000 0000)。

總結:

在計算機中資料用補碼錶示,利用補碼統一了符號位與數值位的運算,同時解決了+0、-0問題,將空出來的二進位制原碼1000 0000表示為-128,這也符合自身邏輯意義的完整性。因此八位二進位制數表示範圍為-128~+127。

補充資料:

在計算機系統中,數值一律用補碼來表示和儲存。原因在於,使用補碼,可以將符號位和數值域統一處理;同時,加法和減法也可以統一處理。

原碼(true form)是一種計算機中對數字的二進位制定點表示方法。原碼錶示法在數值前面增加了一位符號位(即最高位為符號位):正數該位為0,負數該位為1(0有兩種表示:

+0和-0),其餘位表示數值的大小。

字長為8位的無符號二進位制整數能表示的十進位制數值範圍為什麼

十進位制為逢十進一,例如8位十進位制最大就是 99999999 而二進位制是逢二進一,這裡的二和十進位制中的十是一個意思,所以二進位制8位最大就是 11111111 轉換為十進位制就是 255了 8位最小是00000000,就是0,最大是11111111,就是255,用windows自帶計算器就知道...

十進位制的符號為什麼是D,十六進位制的符號是什麼?

看英文8進位制 octal 10進位制 decimal 16進位制 hex 取的頭字母 英文單詞的縮寫 d代表decimal h代表hexadecimal d 建立這語言的人制定的 32位十六進位制fffffffe轉化為十進位制符號為什麼是 2 在計算機中,負數以其正值的補碼形式表達,方法為其絕對值...

魔獸世界密保為什麼只能輸2位數

你要先把你的賬號繫結到一個郵箱賬號上面 那個郵箱賬號就成為你的暴雪通行證了。用這個郵箱賬號登陸就可以輸入3位數的密碼保護了建議你去wow.163.com重新看看 還是3,13的 不知道我想的對不對 我記的網易接手後需要戰網的 要以前的賬號和戰網繫結 登陸的時候用站網登陸 我曾經有次忘了 登陸以前的號...