1樓:匿名使用者
第(1)題的結果是半徑為2的園的周長的2倍;第(2)題的結果是半徑為3的園的周長的6倍。
高等數學都學什麼?
2樓:demon陌
高等數學主要內容包括:極限、微積分、空間解析幾何與向量代數、級數、常微分方程。
指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。
廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。
通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。
3樓:愛要一心
這是目錄:
一、函式 極限 連續
二、一元函式微分學
三、一元函式積分學
四、微分方程初步
五、向量代數 空間解析幾何
六、多元函式微分學
七、多元函式積分學(包括曲線積分、曲面積分)八、無窮級數
我剛剛上完大一,高數主要就是學微積分,因為大學裡的其他學科很多都要用到微積分,所以要會算,那些微積分的公式都要很熟悉的。 先是學導數 ,微分就是在式子後面乘一個dx,而積分就是微分的逆運算。
4樓:匿名使用者
一、函式 極限 連續
二、一元函式微分學
三、一元函式積分學
四、微分方程初步
五、向量代數 空間解析幾何
六、多元函式微分學
七、多元函式積分學(包括曲線積分、曲面積分)八、無窮級數
它的資料和講義,網上有很多。
5樓:匿名使用者
主要就是定積分還有微積分方面的知識
6樓:天涯客
函式,極限,連續
一元函式微分
一元函式積分
多元函式微分
多元函式積分
常微分方程
高等數學怎樣才能學好?
7樓:米米愛凌羽
認真聽、課後複習和預習、多跟學習好的人請教
高等數學,在大學裡面是很多學渣眼中畢業的攔路虎,所以學好高等數學非常的重要,但是如何學好就是其中的關鍵了,所以建議分成三步走;
第一上課認真聽,如何什麼東西要是上課不認真聽,除非是天生有非凡天賦,可以課後自己一看就懂,不然就老老實實上課做好筆記工作,並且認真聽,聽不懂也要聽,畢竟這個也會讓你的腦子留下印象。
第二要課後複習和預習,高等數學其實和以前的數學的學習方法都是類似,需要不停的鞏固運算,不然會非常容易忘記裡面的知識,所以課後的複習和預習工作真的必不可少,不然每次講完就講完,知識都會還給老師,那怎麼能將高等數學學會呢?
第三,要跟學習好的人請教,因為大學已經不想高中一樣了,不懂的可以隨時問老師,上了大學很多同學可能連老師的名字都不認得,並且不是每個老師都有固定的辦公位置,很多老師上完課之後,你就找不到他在**了,所以有一個成績好的人幫忙,就像有個小老師在教你一樣。
高等數學說難也不難,其實什麼東西只要認真學都是學得會的,說學不會的都是害怕辛苦,腦子裡自動下指令說不而已,只要克服困難,一切都是非常的簡單。
8樓:愛歷史的追夢人
雖然高中數學差,但是我覺得只要有恆心還是能夠學好的,有時候我們覺得很難的事情,只要努力認真做了最後肯定會有回報,比如學高等數學可以先提前做功課預習,把自己不會的不懂得知識點單獨列出來,可以多去請教別人,或者自己找一些資料輔助學習,只要功夫下到,再難的問題也能攻破。
9樓:哈哈兒哈
對那些高等數學
想要學好的話,首先要有這個耐心,畢竟高等數學他需要很多的這個知識點才有可能學得了,那麼就需要好好的去了解好好的去複習,另外也要懂得問那些懂的人,比如說學長啊,讓他們教一下,你這樣的話就能夠更快的學好吧。
10樓:藍水燮
不要去想高中學的怎麼樣,到了大學開始重新開始就可以。只要上課認真聽講,老師佈置的作業做完,搞清楚所有知識點,定期複習,高等數學其實很好學,而且學進去之後還會發現很有趣。所以不要聽別人一說高等數學難,心理上就有了一定的牴觸和害怕,自己放平心態好好學就沒有什麼問題。
11樓:丁丁丁丁丁海寅
上課認真聽課,下課認真複習預習。複習這一點特別重要,一定要每天看。不要覺得上課認真聽課,下課就沒什麼事了,每天都要溫故而知新。
大學知識和高中不一樣,隔一天不看就會忘光。如果你聽了一週課沒看書,週日回憶一下可能什麼都不記得。一定要聽課+複習+預習+做題。
12樓:小沐熙
高等數學其實和高中的數學關係並不是很大,所以從頭再來,學好高等數學其實也不是很難的。不要過分的去誇大它的難度,如果這樣做的話,你可能本身就對它有了一個牴觸心理了,這樣的心態對於學習是不好的。只要跟著老師的節奏一步一步的學習,把基本知識點都摸透了,學起來其實是輕鬆有趣的。
13樓:文具盒丶
你上課要好好聽講,其實學的是挺難的,但是最後期末考試考試的題有很多都是根據書本上的例題來改編的哦,不要害怕,只要你不是特別的不聽話,老師最後都會給你一個滿意的成績的。然後平時老師如果收作業的話也要認真的寫。
14樓:啊哈哈貓啊
相信很多人都認為高等數學很難,我個人也是這麼認為的,要想學好高等數學,首先要在上課的時候認真聽講,也要多做練習,這一點是不能避免的,熟能生巧嘛,有時候上課的問題不能夠及時理解,也一定要在課下的時間及時消化掉,堆積多了就很難解決了。
15樓:軟體教程寶典
高數還是比較難得非常抽象。如果你要是高中數學學得很一般的話,大學高數就要加油啦。雖然很籠統但是如果你考研的話對你很重要的,大學課程比較少但是知識並不少,課下你要多看書和做課後題,把老師講的徹底弄懂,然後可以買本輔助教程書籍鞏固一下,對你後期其他的數學學科還是幫助很大的。
16樓:勤全廖盼易
首先得方法對,然後再得你努力,再得你的天賦了
17樓:邢智俟朝旭
我不會說一大堆東西
我的實際感受是
多找規律
多總結自己做題中的經驗
把每天所得的點滴記錄下來
多向老師同學請教
多與同學討論問題,即使最後你可能是錯的
其實理科都這樣
18樓:曲荏海思菱
最基本的是要記
好公式~!!
19樓:弘航刁秋蓮
啊,我是數學院的,高等數學算是比較簡單的一門數學,是數學幾個門類初等知識的集合。所以最重要的是上課聽講,只要做到這一步,已經完成了學好數學的一般,再有就是做課後複習題,如果有時間,做完課後習題,就完全沒問題了
如果你已經錯過了聽課的年級,那隻能拿出參考書惡補了,從第一頁看到最後一頁,即使落一頁也有可能導致後面的看不懂,數學是嚴謹的,推導的。努力,希望你能學好。
我是亡羊補牢的數學院準研究生
20樓:大寶
其實雖然說你的高中數學比較差,但是在大學的時候還是有很大的轉變空間的,對於高數的學習,要想將高數學明白,更多的還是需要上課時的認真聽講,而且課後一定要多複習,多做題,這樣才能夠有一定的積累 為你之後的考試打下良好的基礎。
學習高等數學有什麼用處?
21樓:匿名使用者
1、可以培養思維能力
2、可以應用到其他學科的學習
3、專升本或考研都需要考數學
4、最直接的,期末考試要考,過了才能畢業,才能拿到畢業證
對於高等學校工科類專業的本科生而言,高等數學課程是一門非常重要的基礎課,它內容豐富,理論嚴謹,應用廣泛,影響深遠。
不僅為學習後繼課程和進一步擴大數學知識面奠定必要的基礎,而且在培養學生抽象思維、邏輯推理能力,綜合利用所學知識分析問題解決問題的能力,較強的自主學習的能力,創新意識和創新能力上都具有非常重要的作用。
擴充套件資料
高等數學包括:
數學分析:主要包括微積分和級數理論。微積分是高等數學的基礎,應用範圍非常廣,基本上涉及到函式的領域都需要微積分的知識。
級數中,傅立葉級數和傅立葉變換主要應用在訊號分析領域,包括濾波、資料壓縮、電力系統的監控等,電子產品的製造離不開它。
實變函式(實分析):數學分析的加強版之一。主要應用於經濟學等注重資料分析的領域。
複變函式(複分析):數學分析加強版之二。應用很廣的一門學科,在航空力學、流體力學、固體力學、資訊工程、電氣工程等領域都有廣泛的應用,所以工科學生都要學這門課的。
22樓:匿名使用者
網友發帖詢問高等數學的用途,這個問題回答起來頗為不易,主要原因倒不是用途不清,而是用途太多了,多到這樣文章n篇也說不完的地步。敝人不才,願意拋磚引玉,和大家一起**。
高等數學這個詞是從蘇聯引進的,歐洲作為高等數學的發源地,並沒有這樣的說法。這個高等是相對於幾何(平面、立體,解析)與初等代數而言,從目前的一般高校教學,高等數學主要指微積分。一般理工科本科學生,還需要學習更多一些,包括概率論和數理統計,線性代數,複變函式,泛函分析等等,這些都可以放到高等數學範疇裡面。
當然,這些只是現代數學的最基本的基礎,不過,即使是這個基礎,就可以應付很多現實的任務。
這裡只說說微積分,一言而蔽之,微積分是研究函式的一個數學分支。函式是現代數學最重要的概念之一,描述變數之間的關係,為什麼研究函式很重要呢?還要從數學的起源說起。
各個古文明都掌握一些數學的知識,數學的起源也很多很多,但是一般認為,現代數學直承古希臘。古希臘的很多數學家同時又是哲學家,例如畢達哥拉斯,芝諾,這樣數學和哲學有很深的親緣關係。古希臘的最有生命力的哲學觀點就是世界是變化的(德謨克利特的河流)和亞里斯多德的因果觀念,這兩個觀點一直被人廣泛接受。
前面談到,函式描述變數之間的關係,淺顯的理解就是一個變了,另一個或者幾個怎麼變,這樣,用函式刻畫複雜多變的世界就是順理成章的了,數學成為理論和現實世界的一道橋樑。
微積分理論可以粗略的分為幾個部分,微分學研究函式的一般性質,積分學解決微分的逆運算,微分方程(包括偏微分方程和積分方程)把函式和代數結合起來,級數和積分變換解決數值計算問題,另外還研究一些特殊函式,這些函式在實踐中有很重要的作用。這些理論都能解決什麼問題呢?下面先舉兩個實踐中的例子。
舉個最簡單的例子,火力發電廠的冷卻塔的外形為什麼要做成彎曲的,而不是像煙囪一樣直上直下的?其中的原因就是冷卻塔體積大,自重非常大,如果直上直下,那麼最下面的建築材料將承受巨大的壓力,以至於承受不了(我們知道,地球上的山峰最高只能達到3萬米,否則最下面的岩石都要融化了)。現在,把冷卻塔的邊緣做成雙曲線的性狀,正好能夠讓每一截面的壓力相等,這樣,冷卻塔就能做的很大了。
為什麼會是雙曲線,用於微積分理論5分鐘之內就能夠解決。
我相信讀者在看這篇文章的時候是在使用電腦,計算機內部指令需要通過硬體表達,把訊號轉換為能夠讓我們感知的資訊。前幾天這裡有個**演算法的帖子,很有代表性。windows系統帶了一個計算器,可以進行一些簡單的計算,比如算對數。
計算機是計算是基於加法的,我們常說的多少億次實際上就是指加法運算。那麼,怎麼把計算對數轉換為加法呢?實際上就運用微積分的級數理論,可以把對數函式轉換為一系列乘法和加法運算。
這個兩個例子牽扯的數學知識並不太多,但是已經顯示出微積分非常大的力量。實際上,可以這麼說,基本上現代科學如果沒有微積分,就不能再稱之為科學,這就是高等數學的作用。
數學是軟體開發的基礎,有許多學數學的最後都轉行搞軟體.
數學分析。曲線積分。,數學分析第一類曲線積分
1 斯托克斯公式化為曲面積分 方向餘弦化為二重積分 對稱性化簡 過程如下 2 化為引數方程 利用對稱性 過程如下 3 格林公式 過程如下 數學分析,曲線積分 b.只有一個解釋,就是積分與路徑無關 詳細答案在 上,希望得到採納,謝謝 數學分析 第一類曲線積分 提供兩種方法求y 以上,請採納。f x,y...
還想問下各位數學能人,微積分,不定積分,第一類換元法湊微分法的題目的相關問題d後面是要
d後面是要放你想要的東西哈。要想知道想要什麼,一是要熟悉積分公式,二是要熟悉湊微分!這14個湊微分一定要熟悉哈!從某種意義上來說籌微分法本質是換元法,不僅僅放進去還要改變微分物件或積分物件 想問下各位數學能人,微積分,不定積分,第一類換元法 湊微分法的題目的相關問題,怎麼確定哪個 我也是剛剛學 我覺...
第一類曲面積分的應用可以計算質心嗎
這時我有一次回答別人的問題,建議你看看,中心意思就是第二型的不建議用對稱性,化為第一類的才能用對稱性。第二型曲面曲線積分都不要隨便用對稱性,因為積分的定義是與方向有關的,積分值不是簡單的riemann和的極限,寫成上面的記號只是為了方便記憶,不是說這是真的積分。它的計算是有另外的計算公式,即使積分割...