1樓:匿名使用者
有句古老的話一直流傳到現在叫:夫妻本是同鄰鳥,大難臨頭各自飛。愛情的確不是一個長久的東西,什麼永恆的愛,只不過是大家對愛情的嚮往而編出來的慌言,但話又說回來,愛情不是不可靠,是要看你如何經營它了。
想兩個人在一起一生一世,首先要有愛情,這一點不會有錯,但為什麼還有這麼多人因為愛情而分開呢。原因就在於,愛情是要不繼轉化的,轉的好就會一直堅持下去,而轉的不好那就要分開了。你要學會把愛情轉為感情,再把感情轉為親情,這樣愛就得到了延續,得到了永遠的重生。
其實一個一生會遇到多少次愛情,這一點誰也說不好,但我想告訴你,在你遇到每一次愛情的時候,儘可能去享受它給你帶來的快樂,這是一種經歷,人不能太自私,享受愛情帶來快樂的時候就高興,失去的時候就不高興,不管怎麼說,每一段感情都會給你帶來耳目一新的感覺,給你前所未有的快樂的,最後,我要說,愛不是萬能的,它給我帶來了快樂這就足夠了,不要對它太苛刻,否則難受的只有自已。
2樓:生如夏花白素
其實,只要愛得夠深,那麼無論之前是心裡有陰影也好?是有類似的情況也好?該愛的人都會繼續愛!
所謂的“不是對的人”只是因為愛得不夠深!
至於想離開的人,幹嘛要攔著呢?真的想離開的人,也只是愛得不夠深而已!
不定積分的含義
3樓:匿名使用者
就是求導函式是f(x)的函式
4樓:qq1292335420我
性質1:設a與b均為常數,則f(a->b)[a*f(x)+b*g(x)]dx=a*f(a->b)f(x)dx+b*f(a->b)g(x)dx
性質2:設ab)f(x)dx=f(a->c)f(x)dx+f(c->b)f(x)dx
性質3:如果在區間【a,b】上f(x)恆等於1,那麼f(a->b)1dx=f(a->b)dx=b-a
性質4:如果在區間【a,b】上f(x)>=0,那麼f(a->b)f(x)dx>=0(ab)f(x)dx<=m(b-a) (ab)f(x)dx=f(c)(b-a) (a<=c<=b)成立。
5樓:你的眼神唯美
不定積分結果不唯一求導驗證應該能夠提高湊微分的計算能力。
那就用數字帝國,唉
∫coslnxdx的不定積分是什麼?
6樓:最好的幸福
^先做變換lnx=t,x=e^t,dx=e^tdt,∫coslnxdx=∫cost*e^tdt,再分部積分兩次,
∫cost*e^tdt=e^t*sint-∫sint*e^tdt=e^t*sint-[-e^t*cost+∫cost*e^tdt],移項,2∫cost*e^tdt=e^t(sint+cost)+2c,∫cost*e^tdt=e^t(sint+cost)/2+c,∫coslnxdx=x(sinlnx+coslnx)/2+c.
7樓:你的眼神唯美
不定積分結果不唯一求導驗證應該能夠提高湊微分的計算能力。
∫xdx的不定積分是什麼
8樓:demon陌
具體回答如圖:
一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分。
若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。
9樓:匿名使用者
解∫xdx
=1/2x²+c
用到公式
∫x^ndx
=1/(n+1)x^(n+1)+c
10樓:你在做什麼
∫x^udx=(x^(u 1))/(u 1) c。因此∫xdx=∫(x^2)/2dx。
高數定積分和不定積分有什麼區別
11樓:是你找到了我
1、定義不同
在微積分中,定積分是積分的一種,是函式f(x)在區間[a,b]上積分和的極限。
在微積分中,一個函式f 的不定積分,也稱作反導數,是一個導數f的原函式 f ,即f′=f。
2、實質不同
若定積分存在,則是一個具體的數值(曲邊梯形的面積)。
不定積分實質是一個函式表示式。
擴充套件資料:
三大積分方法:
1、積分公式法
直接利用積分公式求出不定積分。
2、換元積分法
換元積分法可分為第一類換元法與第二類換元法。第一類換元法(即湊微分法),通過湊微分,最後依託於某個積分公式,進而求得原不定積分。
第二類換元法經常用於消去被積函式中的根式。當被積函式是次數很高的二項式的時候,為了避免繁瑣的式,有時也可以使用第二類換元法求解。常用的換元手段有兩種:根式代換法和三角代換法。
3、分部積分法
設函式和u,v具有連續導數,則d(uv)=udv+vdu;移項得到udv=d(uv)-vdu,兩邊積分,得分部積分公式∫udv=uv-∫vdu。如果積分∫vdu易於求出,則左端積分式隨之得到。
12樓:匿名使用者
定義不同:不定積分的定義是求連續函式的所有原函式。定積分的定義是和式的極限,幾何意義是曲線與直線x=a,x=b,y=0所圍成的曲邊梯形的面積。
微積分基本公式(牛頓-萊布尼茲公式)表明,一個連續函式在區間 [a,b] 上的定積分等於其任意一個原函式在區間 [a,b] 上的增量。此公式將定積分問題轉化為求原函式的問題,是連線不定積分與定積分的橋樑,溝通了微分學與積分學之間的關係。
結果不同:不定積分的結果是原函式族,通常表現為帶有積分常數 c。定積分則是以求不定積分的方法求得原函式,再計算出在積分上下限之間的增量,結果通常是一個數值。
13樓:
定積分確切的說是一個數,或者說是關於積分上下限的二元函式,也可以成為二元運算,可以這樣理解∫[a,b]f(x)dx=a*b,其中*即為積分運算(可以類比簡單的加減運算,只不過這時定義的法則不一樣,加減運算是把二維空間的點對映到一維空間上一個確定的點,定積分也一樣,只不過二者的法則不一樣);
不定積分也可以看成是一種運算,但最後的結果不是一個數,而是一類函式的集合.
對於可積函式(原函式是初等函式)存在一個非常美妙的公式∫[a,b]f(x)dx=f(b)-f(a)其中f'(x)=f(x)或∫f(x)dx=f(x)+c最後附上一句,積分這一章難度較大,要學好這一章首先要把微分運算弄得很清楚,同時常用的公式也要記.而且有些定積分是不能通過牛頓-萊布尼茨公式計算的,如∫[0,∞]sinx/xdx=π/2(用留數算的),∫[0,∞]e^(-x^2)dx=√2/2(用二重積分極座標代換算的),以上兩種積分的原函式都不能用初等函式表示,因此也就不能用牛頓-萊布尼茨公式計算,當你不知道這些的時候可能花一年的功夫也沒有絲毫進展.我當年就是深有感觸的,我是在高一入學前的暑假自學的微積分,高一的時候遇到一個定積分∫[0,π/2]dx/√(sinx),開始不知道這是一個超越積分,所以高一只要有空餘時間我就會計算這個定積分,直到高二學完伽馬函式後才計算出其值為(γ(1/4))^2/(2√(2π)),並由此得出不定積分∫dx/√(sinx)也是超越積分.
常見的超越積分還有很多,尤其像那種三角函式帶根號的,多半都是超越的,自學時要注意
14樓:匿名使用者
概念不同。不定積分是求原函式,定積分實質上是不均勻量求和。
一般定積分的計算是利用n-l公式,求原函式的增量。
15樓:
積分範圍不同,定就是確定範圍,不定就不寫上下範,只寫出積分符號
定積分和不定積分有何區別?
16樓:
定積分確切的說是一個數,或者說是關於積分上下限的二元函式,也可以成為二元運算,可以這樣理解∫[a,b]f(x)dx=a*b,其中*即為積分運算(可以類比簡單的加減運算,只不過這時定義的法則不一樣,加減運算是把二維空間的點對映到一維空間上一個確定的點,定積分也一樣,只不過二者的法則不一樣);
不定積分也可以看成是一種運算,但最後的結果不是一個數,而是一類函式的集合.
對於可積函式(原函式是初等函式)存在一個非常美妙的公式∫[a,b]f(x)dx=f(b)-f(a)其中f'(x)=f(x)或∫f(x)dx=f(x)+c最後附上一句,積分這一章難度較大,要學好這一章首先要把微分運算弄得很清楚,同時常用的公式也要記.而且有些定積分是不能通過牛頓-萊布尼茨公式計算的,如∫[0,∞]sinx/xdx=π/2(用留數算的),∫[0,∞]e^(-x^2)dx=√2/2(用二重積分極座標代換算的),以上兩種積分的原函式都不能用初等函式表示,因此也就不能用牛頓-萊布尼茨公式計算,當你不知道這些的時候可能花一年的功夫也沒有絲毫進展.我當年就是深有感觸的,我是在高一入學前的暑假自學的微積分,高一的時候遇到一個定積分∫[0,π/2]dx/√(sinx),開始不知道這是一個超越積分,所以高一只要有空餘時間我就會計算這個定積分,直到高二學完伽馬函式後才計算出其值為(γ(1/4))^2/(2√(2π)),並由此得出不定積分∫dx/√(sinx)也是超越積分.
常見的超越積分還有很多,尤其像那種三角函式帶根號的,多半都是超越的,自學時要注意
17樓:佟佳金生力庚
定積分是指有上下限的積分,先按照不定積分的方法把原函式求出來,然後代入上下限求出定積分。
不定積分就只有求出原函式。
再者不定積分是一個含有常數c的某一個原函式,它代表的是一類這樣的函式。而定積分就是一個數,一個可以明確表達出來的數。
希望對你有幫助~~望採納哦~~
18樓:系韶美蒿玥
不定積分計算的是原函式(得出的結果是一個式子)
定積分計算的是具體的數值(得出的借給是一個具體的數字)
不定積分是微分的逆運算
而定積分是建立在不定積分的基礎上把值代進去相減
在微積分中
積分是微分的逆運算,即知道了函式的導函式,反求原函式。在應用上,積分作用不僅如此,它被大量應用於求和,通俗的說是求曲邊三角形的面積,這巧妙的求解方法是積分特殊的性質決定的。
一個函式的不定積分(亦稱原函式)指另一族函式,這一族函式的導函式恰為前一函式。
其中:[f(x)
+c]'
=f(x)
一個實變函式在區間[a,b]上的定積分,是一個實數。它等於該函式的一個原函式在b的值減去在a的值。
定積分我們知道,用一般方法,y=x^2不能求面積(以x軸,y=x^2,x=0,x=1為界)
定積分就是解決這一問題的.
那摸,怎摸解呢?
用定義法和
微積分基本定理(牛頓-萊布尼茲公式)
具體的,導數的幾條求法都知道吧.
微積分基本定理求定積分
導數的幾條求法在這裡
進行逆運算
例:求f(x)=x^2在0~1上的定積分
∫(上面1,下面0)f(x)dx=f(x)|(上面1,下面0)=(三分之一倍的x的三次方)|(上面1,下面0)≈0.3333×1-0.3333×0=0.3333(三分之一)
完了應該比較簡單
不定積分
設f(x)是函式f(x)的一個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數)叫做函式f(x)的不定積分,記作,即∫f(x)dx=f(x)+c.
其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數,求已知函式的不定積分的過程叫做對這個函式進行積分.
由定義可知:
求函式f(x)的不定積分,就是要求出f(x)的所有的原函式,由原函式的性質可知,只要求出函式f(x)的一個原函式,再加上任意的常數c,就得到函式f(x)的不定積分.
總體來說定積分和不定積分的計算物件是不同的
所以他們才有那麼大的區別
是不是這輩子會遇見什麼人都是命中註定的
沒有什麼是註定了的,如果你真的任命,那麼你的命運才是被註定了的。機遇。沒什麼命中註定。下一秒是無法 的。遇到值得珍惜的要把握。當然不是呀,決定權仍然在彼此兩個人的手上 有一種東西叫做 緣 如果你相信命運,那就是。人的一生中有些事情是命中註定的嗎?有些人也是命中註定會遇見的嗎 是啊,絕大多數的人,一生...
結婚物件真是命中註定的人嗎,人這輩子結婚物件是命中註定的嗎?感覺找個結婚物件好難啊?
命中註定的這個人不一定是你的配偶,但一定會有這麼個人,無論任何情況,只要你們倆碰面,一定會擦出火花的這樣子,是自己老婆 老公當然最幸福咯 我覺得貌相只能看緣分了,你跟好幾個男生認識,但是有對你好的,有你對他好的,如果遇上個緣分淺的結婚了,會離婚,要是緣分深的,會在一起一輩子 很多事都是命中註定的,緣...
人的命運是不是命中註定的,人的命是不是都是命中註定的?
差不多應該是7分命註定,3分靠打拼。什麼才是命中註定的人?可以自己去通過自己努力去改變 不是命中註定,是自己註定 三分天定,七分靠打拼 不是,我命由己不由天,只是每個人的起點不一樣 命運自己掌握,人生最大的敵人是自已。雖然有些事情好像是命中註定 但是命運的最終掌握者還是自已,因為我相信人定勝天 人的...