1樓:辛文琴元楓
數的整除的特徵
(1)1與0的特性:
1是任何整數的約數,即對於任何整數a,總有1|a.
0是任何非零整數的倍數,a≠0,a為整數,則a|0.
(2)若一個整數的末位是0、2、4、6或8,則這個數能被2整除。
(3)若一個整數的數字和能被3整除,則這個整數能被3整除。
(4)若一個整數的末尾兩位數能被4整除,則這個數能被4整除。
(5)若一個整數的末位是0或5,則這個數能被5整除。
(6)若一個整數能被2和3整除,則這個數能被6整除。
(7)若一個整數的個位數字截去,再從餘下的數中,減去個位數的2倍,如果差是7的倍數,則原數能被7整除。如果差太大或心算不易看出是否7的倍數,就需要繼續上述「截尾、倍大、相減、驗差」的過程,直到能清楚判斷為止。例如,判斷133是否7的倍數的過程如下:
13-3×2=7,所以133是7的倍數;又例如判斷6139是否7的倍數的過程如下:613-9×2=595
,59-5×2=49,所以6139是7的倍數,餘類推。
(8)若一個整數的未尾三位數能被8整除,則這個數能被8整除。
(9)若一個整數的數字和能被9整除,則這個整數能被9整除。
(10)若一個整數的末位是0,則這個數能被10整除。
(11)若一個整數的奇位數字之和與偶位數字之和的差能被11整除,則這個數能被11整除。11的倍數檢驗法也可用上述檢查7的「割尾法」處理!過程唯一不同的是:倍數不是2而是1!
(12)若一個整數能被3和4整除,則這個數能被12整除。
(13)若一個整數的個位數字截去,再從餘下的數中,加上個位數的4倍,如果差是13的倍數,則原數能被13整除。如果差太大或心算不易看出是否13的倍數,就需要繼續上述「截尾、倍大、相加、驗差」的過程,直到能清楚判斷為止。
(14)若一個整數的個位數字截去,再從餘下的數中,減去個位數的5倍,如果差是17的倍數,則原數能被17整除。如果差太大或心算不易看出是否17的倍數,就需要繼續上述「截尾、倍大、相減、驗差」的過程,直到能清楚判斷為止。
(15)若一個整數的個位數字截去,再從餘下的數中,加上個位數的2倍,如果差是19的倍數,則原數能被19整除。如果差太大或心算不易看出是否19的倍數,就需要繼續上述「截尾、倍大、相加、驗差」的過程,直到能清楚判斷為止。
(16)若一個整數的末三位與3倍的前面的隔出數的差能被17整除,則這個數能被17整除。
(17)若一個整數的末三位與7倍的前面的隔出數的差能被19整除,則這個數能被19整除。
(18)若一個整數的末四位與前面5倍的隔出數的差能被23(或29)整除,則這個數能被23整除
2樓:silence_離
若一個整數的個位數字截去,再從餘下的數中,減去個位數的2倍,如果差是7的倍數,則原數能被7整除。例如,判斷133是否7的倍數的過程如下:13-3×2=7,所以133是7的倍數;又例如判斷6139是否7的倍數的過程如下:
613-9×2=595 , 59-5×2=49,所以6139是7的倍數,餘類推。
3樓:
一個四位數,前兩位的2倍加上末兩位,和能被7整除,這個四位數就能被7整除.
比如,2009是質數嗎?不是.因為2009 20x2+9=40+9=49=7x7.2009能被7整除.
4樓:維多利亞夢伊
若一個整數的個位數字去掉,再從剩下的數字中減去個位數字的兩倍,如果差是7的倍數,那麼這個數就可以被7整除
能被7整除的數的特徵
5樓:小小小白
1、若一個整數的個位數字截去,再從餘下的數中,減去個位數的2倍,如果差是7的倍數,則原數能被7整除。
例如,判斷133是否是7的倍數的過程如下:13-3×2=7,所以133是7的倍數;又例如判斷6139是否7的倍數的過程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍數,以此類推。
2、如果一個多位數的末三位數與末三位以前的數字所組成的數的差,是7的倍數,那麼這個數就能被7整除。
例如:280678末三位數是678,末三位以前數字所組成的數是280,679-280=399,399能被7整除,因此280679也能被7整除。
6樓:封面娛樂
思想的碎片jj :你好!
你說的:奇數位的和的2倍減去偶數位的和如果任能7整除,那麼這個數能被7整除。這個是顯然不成立的,比如:
1005928,它的奇數位和2倍減偶數位和是29,不能被7整除,但1005928顯然是能被7整除的!
判斷一個數能否被7整除,有兩種方法:
①割尾法:
若一個整數的個位數字截去,再從餘下的數中,減去個位數的2倍,如果差是7的倍數,則原數能被7整除。如果差太大或心算不易看出是否7的倍數,就需要繼續上述「截尾、倍大、相減、驗差」的過程,直到能清楚判斷為止。例如,判斷133是否7的倍數的過程如下:
13-3×2=7,所以133是7的倍數;又例如判斷6139是否7的倍數的過程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍數,餘類推。
割尾法:
證明過程:
設p=a1+a2*10+a3*10^2+...+a(n-1)*10^(n-1)+an*10^n
q=a2+a3*10+...+a(n-1)*10^(n-2)+an*10^(n-1)-2a1
2p+q=21(a2+a3*10+...+an*10^(n-1))
又因為21=7*3,所以若p是7的倍數,那麼可以得到q是7的倍數
②末三法:
這個數的末三位數與末三位以前的數字所組成的數之差(反過來也行)能被7、11、13整除。這個數就能被7、11、13整除。
例如:1005928
末三位數:928,末三位之前:1005 1005-928=77
因為7 | 77,所以7|1005928
末三法,簡略證明:
設一個數為abcdef=abc×1000+def=abc×1001-abc+def=abc×7×13×11-(abc-def),由此可見只要abc-def能被7整除,則abcdef能被7整除。
7樓:麥兜在尋找
能被7整除的數的特徵:若一個整數的個位數字截去,再從餘下的數中,減去個位數的2倍,如果差是7的倍數,則原數能被7整除。如果差太大或心算不易看出是否7的倍數,就需要繼續上述「截尾、倍大、相減、驗差」的過程,直到能清楚判斷為止。
例如,判斷133是否7的倍數的過程如下:13-3×2=7,所以133是7的倍數;又例如判斷6139是否7的倍數的過程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍數,
能被7整除的數的特徵(數學高手進)
8樓:封面娛樂
思想的碎片jj :你好!
你說的:奇數位的和的2倍減去偶數位的和如果任能7整除,那麼這個數能被7整除。這個是顯然不成立的,比如:
1005928,它的奇數位和2倍減偶數位和是29,不能被7整除,但1005928顯然是能被7整除的!
判斷一個數能否被7整除,有兩種方法:
①割尾法:
若一個整數的個位數字截去,再從餘下的數中,減去個位數的2倍,如果差是7的倍數,則原數能被7整除。如果差太大或心算不易看出是否7的倍數,就需要繼續上述「截尾、倍大、相減、驗差」的過程,直到能清楚判斷為止。例如,判斷133是否7的倍數的過程如下:
13-3×2=7,所以133是7的倍數;又例如判斷6139是否7的倍數的過程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍數,餘類推。
割尾法:
證明過程:
設p=a1+a2*10+a3*10^2+...+a(n-1)*10^(n-1)+an*10^n
q=a2+a3*10+...+a(n-1)*10^(n-2)+an*10^(n-1)-2a1
2p+q=21(a2+a3*10+...+an*10^(n-1))
又因為21=7*3,所以若p是7的倍數,那麼可以得到q是7的倍數
②末三法:
這個數的末三位數與末三位以前的數字所組成的數之差(反過來也行)能被7、11、13整除。這個數就能被7、11、13整除。
例如:1005928
末三位數:928,末三位之前:1005 1005-928=77
因為7 | 77,所以7|1005928
末三法,簡略證明:
設一個數為abcdef=abc×1000+def=abc×1001-abc+def=abc×7×13×11-(abc-def),由此可見只要abc-def能被7整除,則abcdef能被7整除。
9樓:匿名使用者
你說的:奇數位的和的2倍減去偶數位的和如果任能7整除,那麼這個數能被7整除。這個是顯然不成立的,比如:
1005928,它的奇數位和2倍減偶數位和是29,不能被7整除,但1005928顯然是能被7整除的!
判斷一個數能否被7整除,有兩種方法:
①割尾法:
若一個整數的個位數字截去,再從餘下的數中,減去個位數的2倍,如果差是7的倍數,則原數能被7整除。如果差太大或心算不易看出是否7的倍數,就需要繼續上述「截尾、倍大、相減、驗差」的過程,直到能清楚判斷為止。例如,判斷133是否7的倍數的過程如下:
13-3×2=7,所以133是7的倍數;又例如判斷6139是否7的倍數的過程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍數,餘類推。
割尾法:
證明過程:
設p=a1+a2*10+a3*10^2+...+a(n-1)*10^(n-1)+an*10^n
q=a2+a3*10+...+a(n-1)*10^(n-2)+an*10^(n-1)-2a1
2p+q=21(a2+a3*10+...+an*10^(n-1))
又因為21=7*3,所以若p是7的倍數,那麼可以得到q是7的倍數
②末三法:
這個數的末三位數與末三位以前的數字所組成的數之差(反過來也行)能被7、11、13整除。這個數就能被7、11、13整除。
例如:1005928
末三位數:928,末三位之前:1005 1005-928=77
因為7 | 77,所以7|1005928
末三法,簡略證明:
設一個數為abcdef=abc×1000+def=abc×1001-abc+def=abc×7×13×11-(abc-def),由此可見只要abc-def能被7整除,則abcdef能被7整除。還有一個更簡單的判定法則: 一個正整數,能被7(或11或13)整除的特徵(充要條件)是,這個數的末三位數字所表示的數與末三位以前的數字所表示的數以大減小的差能被7(或11或13)整除 1)1與0的特性:
1是任何整數的約數,即對於任何整數a,總有1|a.
0是任何非零整數的倍數,a≠0,a為整數,則a|0.
(2)若一個整數的末位是0、2、4、6或8,則這個數能被2整除。
(3)若一個整數的數字和能被3整除,則這個整數能被3整除。
(4) 若一個整數的末尾兩位數能被4整除,則這個數能被4整除。
(5)若一個整數的末位是0或5,則這個數能被5整除。
(6)若一個整數能被2和3整除,則這個數能被6整除。
(7)若一個整數的個位數字截去,再從餘下的數中,減去個位數的2倍,如果差是7的倍數,則原數能被7整除。如果差太大或心算不易看出是否7的倍數,就需要繼續上述「截尾、倍大、相減、驗差」的過程,直到能清楚判斷為止。例如,判斷133是否7的倍數的過程如下:
13-3×2=7,所以133是7的倍數;又例如判斷6139是否7的倍數的過程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍數,餘類推。
(8)若一個整數的未尾三位數能被8整除,則這個數能被8整除。
(9)若一個整數的數字和能被9整除,則這個整數能被9整除。
(10)若一個整數的末位是0,則這個數能被10整除。
(11)若一個整數的奇位數字之和與偶位數字之和的差能被11整除,則這個數能被11整除。11的倍數檢驗法也可用上述檢查7的「割尾法」處理!過程唯一不同的是:倍數不是2而是1!
(12)若一個整數能被3和4整除,則這個數能被12整除。
(13)若一個整數的個位數字截去,再從餘下的數中,加上個位數的4倍,如果差是13的倍數,則原數能被13整除。如果差太大或心算不易看出是否13的倍數,就需要繼續上述「截尾、倍大、相加、驗差」的過程,直到能清楚判斷為止。
(14)若一個整數的個位數字截去,再從餘下的數中,減去個位數的5倍,如果差是17的倍數,則原數能被17整除。如果差太大或心算不易看出是否17的倍數,就需要繼續上述「截尾、倍大、相減、驗差」的過程,直到能清楚判斷為止。
(15)若一個整數的個位數字截去,再從餘下的數中,加上個位數的2倍,如果差是19的倍數,則原數能被19整除。如果差太大或心算不易看出是否19的倍數,就需要繼續上述「截尾、倍大、相加、驗差」的過程,直到能清楚判斷為止。
(16)若一個整數的末三位與3倍的前面的隔出數的差能被17整除,則這個數能被17整除。
(17)若一個整數的末三位與7倍的前面的隔出數的差能被19整除,則這個數能被19整除。
(18)若一個整數的末四位與前面5倍的隔出數的差能被23(或29)整除,則這個數能被23
什麼數能被3或7整除
能同時被3或7整除的是21的倍數 我估計你是想問怎麼簡單判斷3或7的倍數吧 先說3的 如果一個整數每個數位上的數字之和能被3整除,那麼就是3的倍數再說7的 數字長的話把它分成兩段,個十百3位為1段,千位及之前為一段再把這兩個數相減,如1244558這個數,用1244 558 686把得到的數拿去除7...
能被3整除的數特徵是怎麼的來的,整除的能被整除的數的特徵
能被整除的數的特徵是 是3的倍數 如6,9,12等等 各個數位上的數相加的和是3的倍數。1 能被2整除的數 個位上的數能被2整除 偶數都能被2整除 那麼這個數能被2整除。2 能被4整除的數 個位和十位所組成的兩位數能被4整除,那麼這個數能被4整除。3 能被5整除的數 個位上的數都能被5整除 即個位為...
能被11整除的特徵是什麼,能被11整除的特徵是什麼?
被三整除的數必須各個位數上的數加起來為三的倍數,比如136,1 3 6 10不行,147 1 4 7 12,就可以。若一個整數的末尾兩位數能被4整除,則這個數能被4整除。被7整除 若一個整數的個位數字截去,再從餘下的數中,減去個位數的2倍,如果差是7的倍數,則原數能被7整除。如果差太大或心算不易看出...