數學方法計算,數學簡便計算,有哪幾種方法

2022-09-15 16:50:29 字數 6274 閱讀 1080

1樓:天使的星辰

設賣出的兒童票x張,團體票x張,則大人票是300-2x張,依題意得80(300-2x)+40x+60x=2100024000-60x=21000

60x=3000

x=50

300-2x=200

賣出的兒童票50張,團體票50張,則大人票是200張

2樓:追求五常

預設大人門票,兒童門票和團體票之間沒有聯絡設一天內賣出的兒童票和團體票分別為x張,則賣出的大人門票為(300-2x)張。由題,得

80×(300-2x)+40x+60x=2100024000-160x+40x+60x=2100060x=3000

x=50

300-2x=300-2×50=200

∴兒童票和團體票分別為50張,大人門票200張。

3樓:知竹常樂

解:兒童票=團體票=(80×300-21000)÷[80-(40+60)÷2]÷2

=(24000-21000)÷(80-50)÷2=3000÷30÷2

=100÷2

=50(張)

大人門票=300-50-50=200(張)

4樓:北京萬通汽車學校

大人票200張

兒童50張

團體50張

數學簡便計算,有哪幾種方法

5樓:冰夏

一、運用乘法分配律簡便計算

簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:

ax(b+c)=axb+axc

cx(a-b)=axc-bxc

例1:38x101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。

38x101

=38x(100+1)

=38x100+38x1

=3800+38

=3838

例2:47x98,這樣該怎麼拆呢?要拆98,使它更接近100。

47x98

=47x(100-2)

=47x100-47x2

=4700-94

=4606

二、基準數法

在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。

例:2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法結合律法

對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。

例:5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30四、拆分法

顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.

5,4和2.5,8和1.25等。

注意不要改變數的大小哦!

例:3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

=1000

五、提取公因式法

這個方法實際上是運用了乘法分配律,將相同因數提取出來。

例:0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

=9.2

6樓:g老師講奧數

簡便計算是採用數學計算中的拆分湊整思想,通過四則運算規律,從而簡化計算的方法。

就像68+77=?

大多數人不一定立刻能算出結果,

如果換成70+75=?

相信每一個人都可以一口算出和是145。

這裡其實就是把77拆分成2+75,

68+77

=68+2+75

=70+75

=145

遇見覆雜的計算式時,

先觀察有沒有可能湊整,

湊成整十整百之後再進行計算,

不僅簡便,而且避免計算出錯。

①加減湊整,g老師講奧數(微)

【例題1】999+99+29+9+4=?

題中999,99,29,9這四個數字與整數1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把這4個1補到999,99,29,9上,原式就可以簡化成:

999+99+29+9+4

=999+99+29+9+1+1+1+1

=999+1+99+1+29+1+9+1

=1000+100+30+10

=1140

【例題2】5999+499+299+19=?

看完例1,再來看看例2,還是末位都是9,自然要用我們的湊整法了,不過稍有不同,因為例2中沒有4來拆分成1+1+1+1。

沒有槍沒有炮,自己去創造!

先把它加上1+1+1+1,然後再減去4,不就相當於式子加了一個0嗎?

5999+499+299+19

=5999+1+499+1+299+1+19+1-4

=6000+500+300+20-4

=6816

②分組湊整,g老師講奧數(微)

在只有加減法的計算題中,將算式中的各項重新分下組湊整,也可以使計算非常方便。

【例題3】100-95+92-89+86-83+80-77=?

題目中的兩位數加減混合運算,硬算是非常費勁的,但是似乎又不能拆分湊整,再觀察題目可以發現從第2個數95起,後面的數都比前一個小3。

根據加法減法運算性質,我們給相鄰的項加上括號。

100-95+92-89+86-83+80-77

=(100-95)+(92-89)+(86-83)+(80-77)

=5+3+3+3

=14湊整法不僅可以用在加減計算中,乘除加減混合運算也常常會考到。

③提取公因數法,g老師講奧數(微)

這就需要用到乘法分配律提取公因數,

又稱為提取公因數法。

如果沒有公因數,我們可以採取乘法結合律變化出公因數。

a×b=(a×10)×(b÷10),

a×b÷c=a÷c×b,

a×b×c=a×(b×c)。

【例題4】47.9x6.6+529x0.34=?

很明顯題目中的6.6+3.4=10,我們想辦法湊出一個3.

4,這就用到了a×b=(a×10)×(b÷10)。但是即使10湊出來,仍然不能提取公因數來簡便計算,這就得用到乘法分配律,52.9x3.

4=(47.9+5)x3.4,創造出一個47.

9,方便我們提取公因數。

47.9x6.6+529x0.34

=47.9x6.6+529÷10x10x0.34

=47.9x6.6+(47.9+5)x3.4

=47.9x(6.6+3.4)+17

=496

簡便計算的考察重點在於四則運算規律的靈活運用,方法掌握的基礎上,對於四則運算規律必須牢記在心,才能更好地理解運用。

7樓:小何

一、整體簡便計算。整個一道算式可以用簡便方法計算,這種形式最為常見。例如:

=1.14×10

=11.4

二、區域性簡便計算。一道算式中區域性可以進行簡便計算,這種形式也不少見。

三、中途簡便計算。開始計算並不能簡便計算,而經過一兩步後卻能進行簡便計算,這種情況最容易忽視。例如:

=1.2×(1+5+4)

=1.2×10

=12四、重複簡便計算。在一道題裡不止一次地進行簡便計算,這種情況往往不注意後一次簡便計算。例如:

=8×55×0.125

=8×0.125×55 第二次

=1×55=55

8樓:匿名使用者

一、基礎性訓練

從小學生不同的年齡心理特點上看,口算的基礎要求不同。低中年級主要在一二位數的加法。高年級把一 位數乘兩位數的口算作為基礎訓練效果較好。

具體口算要求是,先將一位數與兩位數的十位上的數相乘,得到 的三位數立即加上一位數與兩位數的個位上的數相乘的積,迅速說出結果。這項口算訓練,有數的空間概念的 練習,也有數位的比較,又有記憶訓練,在小學階段可以說是一項數的抽象思維的昇華訓練,對於促進思維及 智力的發展是很有益的。這項練習可以安排在兩段的時間裡進行。

一是早讀課,一是在家庭作業的最後安排一 組。每組是這樣劃分的:一位數任選一個,對應兩位數中個位或十位都含有某一個數的。

每組有18道,讓學生 先寫出算式,口算幾遍後再直接寫出得數。這樣持續一段時間後(一般為2~3個月),其口算的速度、正確率 也就大大提高了。

二、針對性訓練

小學高年級數的主體形式已從整數轉到了分數。在數的運算中,異分母分數加法是學生費時多又最容易出 差錯的地方,也是教與學的重點與難點。這個重點和難點如何攻破呢?

經研究比較和教學實踐證明,把分數運 算的口算有針對地放在異分母分數加法上是正確的。通過分析歸納,異分母分數加(減)法只有三種情況,每 種情況中都有它的口算規律,學生只要掌握了,問題就迎刃而解了。

1.兩個分數,分母中大數是小數倍數的。

如「1/12+1/3」,這種情況,口算相對容易些,方法是:大的分母就是兩個分母的公分母,只要把小的分 母擴大倍數,直到與大數相同為止,分母擴大幾倍,分子也擴大相同的倍數,即可按同分母分數相加進行口算:1/12+1/3=1/12+4/12=5/12

2.兩個分數,分母是互質數的。這種情況從形式上看較難,學生也是最感頭痛的,但完全可以化難為易:

它通分後公分母就是兩個分母的積,分子是每個分數的分子與另一個分母的積的和(如果是減法就是這兩個積的差),如2/7+3/13,口算過程是:公分母是7×13=91,分子是26(2×13)+21(7×3)=47,結果是47/91。

如果兩個分數的分子都是1,則口算更快。如「1/7+1/9」,公分母是兩個分母的積(63),分子是兩個分母 的和(16)。

3.兩個分數,兩個分母既不是互質數,大數又不是小數的倍數的情況。這種情況通常用短除法來求得公分 母,其實也可以在式子中直介面算通分,迅速得出結果。

可用分母中大數擴大倍數的方法來求得公分母。具體 方法是:把大的分母(大數)一倍一倍地擴大,直到是另一個分母小數的倍數為止。

如1/8+3/10把大數10,2 倍、3倍、4倍地擴大,每擴大一次就與小數8比較一下,看是否是8的倍數了,當擴大到4倍是40時,是8的倍數 (5倍),則公分母是40,分子就分別擴大相應的倍數後再相加(5+12=17),得數為17/40。

以上三種情況在帶分數加減法中口算方法同樣適用。

三、記憶性訓練

高年級計算內容具有廣泛性、全面性、綜合性。一些常見的運算在現實生活中也經常遇到,這些運算有的 無特定的口算規律,必須通過強化記憶訓練來解決。主要內容有:

1.在自然數中10~24每個數的平方結果;

2.圓周率近似值3.14與一位數的積及與12、15、16、25幾個常見數的積;

3.分母是2、4、5、8、10、16、20、25的最簡分數的小數值,也就是這些分數與小數的互化。

以上這些數的結果不管是平時作業,還是現實生活,使用的頻率很高,熟練掌握、牢記後,就能轉化為能 力,在計算時產生高的效率。

四、規律性的訓練

1.運算定律的熟練掌握。這方面的內容主要有「五大定律」:

加法的交換律、結合律;乘法的交換律、結 合律、分配律。其中乘法分配律用途廣形式多,有正用與反用兩方面內容,有整數、小數、分數的形式出現。 在帶分數與整數相乘時,學生往往忽略了乘法分配律的應用使計算複雜化。

如2000/16×8,用了乘法分配律可 以直介面算出結果是1001.5,用化假分數的一般方法計算則耗時多且容易錯。此外還有減法運算性質和商不變 性質的運用等。

2.規律性訓練。主要是個位上的數是5的兩位數的平方結果的口算方法(方法略)。

3.掌握一些特例。如較常遇見的在分數減法中,通分後分子部分不夠減,往往減數的分子比被減數的分子 大1、2、3等較小的數時,不管分母有多大,均可以直介面算。

如12/7-6/7它的分子只相差1,它差的分子一定 比分母少1,結果不用計算是6/7。又如:194/99-97/99,分子部分相差2,它差的分子就比分母少2,結果就是 97/99。

減數的分子比被減數的分子大3、4、5等較小的數時,都可以迅速口算出結果。又如任意兩位數與1.5積 的口算,就是兩位數再加上它的一半。

五、綜合性訓練

1.以上幾種情況的綜合出現;

2.整數、小數、分數的綜合出現;

3.四則混合的運算順序綜合訓練。

綜合性訓練有利於判斷能力、反應速度的提高和口算方法的鞏固。

當然,以上這些情況,要使學生熟練掌握,老師首先要嫻熟運用自如,指導時才能得心應手,提高效果。 同時訓練應持之以恆,三天打漁兩天晒網,是難以收到預期效果的。

數學簡便計算,數學簡便計算,有哪幾種方法

以600為標準數,那麼各數相差數的和是 1 0 2 1 8 10所以平均數是 600 10 5 600 2 598 601 599 598 592 600 除以5 1200 1190 600 除以5 2990除以5 538 598 592 599 601 600 1190 1200 600 2990...

簡便計算數學,簡便計算 數學 一個

27 15 9 20 3 7 27 15 9 20 3 7 3 3 15 3 2 20 3 7 3 45 3 40 3 7 3 45 40 7 3 2 9 設pf1 y k1 x 1 pf2 k2 x 1 分別與橢圓聯立方程 1 2k1 x 4k1 x 2k1 2 0,所以設a x1,y1 b x2...

怎樣用數學方法計算生日,用數學方法,怎樣計算生日?

1 拿個計抄算器.首先,讓她按下自己出生的bai月份 2 接下du來將這個數字乘以4,得出來的zhi答案再加dao上9 3 接著再將所得出來的答案乘以25.最後再加上她出生的日期 4 所得之數在減225 生日數的含義 生日數代表天性所帶來的人格特質與行為表現,透露著你的性格 思考方式。可以說,僅從生...