數字推理123,3233A613B815C

2021-03-04 01:40:01 字數 8111 閱讀 4402

1樓:快樂心情

選b,8/15

分子分別是2的0次方,1次方,2次方,3次方,4次方,5次方分母5=3+2 9=5+2+2 15=9+2+2+2 23=15+2+2+2+2 33=23+2+2+2+2+2

希望滿意

數字推理1/3,1/2,3/5,2/3,5/7,( )

2樓:匿名使用者

樓主你好

1/3=1/3

1/2=3/6

3/5=6/10

2/3=10/15

5/7=15/21

所以下一個數應該是21/28,其中21是1加到6,28是1加到7,化簡得到3/4

希望你滿意

3樓:答得多

1/3,2/4,3/5,4/6,5/7,6/8,(後一個分數的分子和分母都比前一個分數的大1)

將上面數列中的分數全部化為最簡分數,可得:

1/3,1/2,3/5,2/3,5/7,( 3/4 )。

4樓:穆碧沃孤菱

應該是個序列吧,我好像弄明白了一點

0,1/3,2/4(即1/2),3/5,4/6(即2/3),5/7,然後應該是6/8(即3/4)

所以括號中填3/4就可

1/3,4,2/5,5/2,4/9,7/4,8/17,( )

5樓:其實我一直在走

很簡單啊這樣看(1/3,4/1)(2/5,5/2)(4/9,7/4)(8/17,?)

顯然每組的第一個數的分子是前一組第一個數的2倍,同時也是該組的第二個數的分母,所以第四組第二個數分母是8,再來看每組第二個數分子,顯然第一組1+3=4,第二組2+3=5,第三組4+3=7,所以分子=8+3=11

所以答案是b

補充一下和答案無關的。每組第一個數的分母是2^n+1

6樓:匿名使用者

顯然每組的第一個數的分子是前一組第一個數的2倍,同時也是該組的第二個數的分母,所以第四組第二個數分母是8,再來看每組第二個數分子,顯然第一組1+3=4,第二組2+3=5,第三組4+3=7,所以分子=8+3=11b

7樓:百度使用者

17/8;19/8;

數字推理技巧

8樓:未織

第一步:整體觀察,若有線性趨勢則走思路a,若沒有線性趨勢或線性趨勢不明顯則走思路b。

注:線性趨勢是指數列總體上往一個方向發展,即數值越來越大,或越來越小,且直觀上數值的大小變化跟項數本身有直接關聯(別覺得太玄乎,其實大家做過一些題後都能有這個直覺)

第二步思路a:分析趨勢

1, 增幅(包括減幅)一般做加減。

基本方法是做差,但如果做差超過**仍找不到規律,立即轉換思路,因為公考沒有考過**以上的等差數列及其變式。

例1:-8,15,39,65,94,128,170,()

a.180 b.210 c. 225 d 256

解:觀察呈線性規律,數值逐漸增大,且增幅一般,考慮做差,得出差23,24,26,29,34,42,再度形成一個增幅很小的線性數列,再做差得出1,2,3,5,8,很明顯的一個和遞推數列,下一項是5+8=13,因而二級差數列的下一項是42+13=55,因此一級數列的下一項是170+55=225,選c。

總結:做差不會超過**;一些典型的數列要熟記在心

2, 增幅較大做乘除

例2:0.25,0.25,0.5,2,16,()

a.32 b. 64 c.128 d.256

解:觀察呈線性規律,從0.25增到16,增幅較大考慮做乘除,後項除以前項得出1,2,4,8,典型的等比數列,二級數列下一項是8*2=16,因此原數列下一項是16*16=256

總結:做商也不會超過**

3, 增幅很大考慮冪次數列

例3:2,5,28,257,()

a.2006 b。1342 c。3503 d。3126

解:觀察呈線性規律,增幅很大,考慮冪次數列,最大數規律較明顯是該題的突破口,注意到257附近有冪次數256,同理28附近有27、25,5附近有4、8,2附近有1、4。而數列的每一項必與其項數有關,所以與原數列相關的冪次數列應是1,4,27,256(原數列各項加1所得)即1^1,2^2,3^3,4^4,下一項應該是5^5,即3125,所以選d

總結:對冪次數要熟悉

第二步思路b:尋找視覺衝擊點

注:視覺衝擊點是指數列中存在著的相對特殊、與眾不同的現象,這些現象往往是解題思路的導引

視覺衝擊點1:長數列,項數在6項以上。基本解題思路是分組或隔項。

例4:1,2,7,13,49,24,343,()

a.35 b。69 c。114 d。238

解:觀察前6項相對較小,第七項突然變大,不成線性規律,考慮思路b。長數列考慮分組或隔項,嘗試隔項得兩個數列1,7,49,343;2,13,24,()。

明顯各成規律,第一個支數列是等比數列,第二個支數列是公差為11的等差數列,很快得出答案a。

總結:將等差和等比數列隔項雜糅是常見的考法。

視覺衝擊點2:搖擺數列,數值忽大忽小,呈搖擺狀。基本解題思路是隔項。

20 5

例5:64,24,44,34,39,()

10 a.20 b。32 c 36.5 d。19

解:觀察數值忽小忽大,馬上隔項觀察,做差如上,發現差成為一個等比數列,下一項差應為5/2=2.5,易得出答案為36.5

總結:隔項取數不一定各成規律,也有可能如此題一樣綜合形成規律。

視覺衝擊點3:雙括號。一定是隔項成規律!

例6:1,3,3,5,7,9,13,15,(),()

a.19,21 b。19,23 c。21,23 d。27,30

解:看見雙括號直接隔項找規律,有1,3,7,13,();3,5,9,15,(),很明顯都是公差為2的二級等差數列,易得答案21,23,選c

例7:0,9,5,29,8,67,17,(),()

a.125,3 b。129,24 c。84,24 d。172,83

解:注意到是搖擺數列且有雙括號,義無反顧地隔項找規律!有0,5,8,17,();9,29,67,()。

支數列二數值較大,規律較易顯現,注意到增幅較大,考慮乘除或冪次數列,腦中閃過8,27,64,發現支數列二是2^3+1,3^3+2,4^3+3的變式,下一項應是5^3+4=129。直接選b。回頭再看會發現支數列一可以還原成1-1,4+1,9-1,16+1,25-1.

總結:雙括號隔項找規律一般只確定支數列其一即可,為節省時間,另一支數列可以忽略不計

視覺衝擊點4:分式。

型別(1):整數和分數混搭,提示做乘除。

例8:1200,200,40,(),10/3

a.10 b。20 c。30 d。5

解:整數和分數混搭,馬上聯想做商,很易得出答案為10

型別(2):全分數。解題思路為:能約分的先約分;能劃一的先劃一;突破口在於不宜變化的分數,稱作基準數;分子或分母跟項數必有關係。

例9:3/15,1/3,3/7,1/2,()

a.5/8 b。4/9 c。15/27 d。-3

解:能約分的先約分3/15=1/5;分母的公倍數比較大,不適合劃一;突破口為3/7,因為分母較大,不宜再做乘積,因此以其作為基準數,其他分數圍繞它變化;再找項數的關係3/7的分子正好是它的項數,1/5的分子也正好它的項數,於是很快發現分數列可以轉化為1/5,2/6,3/7,4/8,下一項是5/9,即15/27

例10:-4/9,10/9,4/3,7/9,1/9

a.7/3 b 10/9 c -5/18 d -2

解:沒有可約分的;但是分母可以劃一,取出分子數列有-4,10,12,7,1,後項減前項得

14,2,-5,-6,(-3.5),(-0.5) 與分子數列比較可知下一項應是7/(-2)=-3.

5,所以分子數列下一項是1+(-3.5)= -2.5。

因此(-2.5)/9= -5/18

視覺衝擊點5:正負交疊。基本思路是做商。

例11:8/9, -2/3, 1/2, -3/8,()

a 9/32 b 5/72 c 8/32 d 9/23

解:正負交疊,立馬做商,發現是一個等比數列,易得出a

視覺衝擊點6:根式。

型別(1)數列中出現根數和整數混搭,基本思路是將整數化為根數,將根號外數字移進根號內

例12:0 3 1 6 √2 12 ( ) ( ) 2 48

a. √3 24 b.√3 36 c.2 24 d.2 36

解:雙括號先隔項有0,1,√2,(),2;3,6,12,(),48.支數列一即是根數和整數混搭型別,以√2為基準數,其他數圍繞它變形,將整數劃一為根數有√0 √1 √2 ()√4,易知應填入√3;支數列二是明顯的公比為2的等比數列,因此答案為a

型別(2)根數的加減式,基本思路是運用平方差公式:a^2-b^2=(a+b)(a-b)

例13:√2-1,1/(√3+1),1/3,()

a(√5-1)/4 b 2 c 1/(√5-1) d √3

解:形式劃一:√2-1=(√2-1)(√2+1)/(√2+1)=(2-1)/ (√2+1)=1/(√2+1),這是根式加減式的基本變形形式,要考就這麼考。

同時,1/3=1/(1+2)=1/(1+√4),因此,易知下一項是1/(√5+1)=( √5-1)/[( √5)^2-1]= (√5-1)/4.

視覺衝擊點7:首一項或首兩項較小且接近,第二項或第三項突然數值變大。基本思路是分組遞推,用首一項或首兩項進行五則運算(包括乘方)得到下一個數。

例14:2,3,13,175,()

a.30625 b。30651 c。30759 d。30952

解:觀察,2,3很接近,13突然變大,考慮用2,3計算得出13有2*5+3=3,也有3^2+2*2=13等等,為使3,13,175也成規律,顯然為13^2+3*2=175,所以下一項是175^2+13*2=30651

總結:有時遞推運算規則很難找,但不要動搖,一般這類題目的規律就是如此。

視覺衝擊點8:純小數數列,即數列各項都是小數。基本思路是將整數部分和小數部分分開考慮,或者各成單獨的數列或者共同成規律。

例15:1.01,1.02,2.03,3.05,5.08,()

a.8.13 b。 8.013 c。7.12 d 7.012

解:將整數部分抽取出來有1,1,2,3,5,(),是一個明顯的和遞推數列,下一項是8,排除c、d;將小數部分抽取出來有1,2,3,5,8,()又是一個和遞推數列,下一項是13,所以選a。

總結:該題屬於整數、小數部分各成獨立規律

例16:0.1,1.2,3.5,8.13,( )

a 21.34 b 21.17 c 11.34 d 11.17

解:仍然是將整數部分與小數部分拆分開來考慮,但在觀察數列整體特徵的時候,發現數字非常像一個典型的和遞推數列,於是考慮將整數和小樹部分綜合起來考慮,發現有新數列0,1,1,2,3,5,8,13,(),(),顯然下兩個數是8+13=21,13+21=34,選a

總結:該題屬於整數和小數部分共同成規律

視覺衝擊點9:很像連續自然數列而又不連貫的數列,考慮質數或合數列。

例17:1,5,11,19,28,(),50

a.29 b。38 c。47 d。49

解:觀察數值逐漸增大呈線性,且增幅一般,考慮作差得4,6,8,9,……,很像連續自然數列而又缺少5、7,聯想和數列,接下來應該是10、12,代入求證28+10=38,38+12=50,正好契合,說明思路正確,答案為38.

視覺衝擊點10:大自然數,數列中出現3位以上的自然數。因為數列題運算強度不大,不太可能用大自然數做運算,因而這類題目一般都是考察微觀數字結構。

例18:763951,59367,7695,967,()

a.5936 b。69 c。769 d。76

解:發現出現大自然數,進行運算不太現實,微觀地考察數字結構,發現後項分別比前項都少一位數,且少的是1,3,5,下一個預設的數應該是7;另外預設一位數後,數字順序也進行顛倒,所以967去除7以後再顛倒應該是69,選b。

例19:1807,2716,3625,()

a.5149 b。4534 c。4231 d。5847

解:四位大自然數,直接微觀地看各數字關係,發現每個四位數的首兩位和為9,後兩位和為7,觀察選項,很快得出選b。

第三步:另闢蹊徑。

一般來說完成了上兩步,大多數型別的題目都能找到思路了,可是也不排除有些規律不容易直接找出來,此時若把原數列稍微變化一下形式,可能更易看出規律。

變形一:約去公因數。數列各項數值較大,且有公約數,可先約去公約數,轉化成一個新數列,找到規律後再還原回去。

例20:0,6,24,60,120,()

a.186 b。210 c。220 d。226

解:該數列因各項數值較大,因而拿不準增幅是大是小,但發現有公約數6,約去後得0,1,4,10,20,易發現增幅一般,考慮做加減,很容易發現是一個二級等差數列,下一項應是20+10+5=35,還原乘以6得210。

變形二:因式分解法。數列各項並沒有共同的約數,但相鄰項有共同的約數,此時將原數列各數因式分解,可幫助找到規律。

例21:2,12,36,80,()

a.100 b。125 c 150 d。175

解:因式分解各項有1*2,2*2*3,2*2*3*3,2*2*2*2*5,稍加變化把形式統一一下易得1*1*2,2*2*3,3*3*4,4*4*5,下一項應該是5*5*6=150,選c。

變形三:通分法。適用於分數列各項的分母有不大的最小公倍數。

例22:1/6,2/3,3/2,8/3,()

a.10/3 b.25/6 c.5 d.35/6

解:發現分母通分簡單,馬上通分去掉分母得到一個單獨的分子數列1,4,9,16,()。增幅一般,先做差的3,5,7,下一項應該是16+9=25。還原成分母為6的分數即為b。

第四步:蒙猜法,不是辦法的辦法。

有些題目就是百思不得其解,有的時候就剩那麼一兩分鐘,那麼是不是放棄呢?當然不能!一分萬金啊,有的放矢地蒙猜往往可以救急,正確率也不低。下面介紹幾種我自己琢磨的蒙猜法。

第一蒙:選項裡有整數也有小數,小數多半是答案。

見例5:64,24,44,34,39,()

a.20 b。32 c 36.5 d。19

直接猜c!

例23:2,2,6,12,27,()

a.42 b 50 c 58.5 d 63.5

猜:發現選項有整數有小數,直接在c、d裡選擇,出現「.5」的小數說明運算中可能有乘除關係,觀察數列中後項除以前項不超過3倍,猜c

正解:做差得0,4,6,15。(0+4)*1.

5=6 (2+6)*1.5=12 (4+6)*1.5=15 (6+15)*1.

5=31.5,所以原數列下一項是27+31.5=58.

5第二蒙:數列中出現負數,選項中又出現負數,負數多半是答案。

例24:-4/9,10/9,4/3,7/9,1/9,( )

a.7/3 b.10/9 c -5/18 d.-2

猜:數列中出現負數,選項中也出現負數,在c/d兩個裡面猜,而觀察原數列,分母應該與9有關,猜c。

第三蒙:猜最接近值。有時候貌似找到點規律,算出來的答案卻不在選項中,但又跟某一選項很接近,別再浪費時間另找規律了,直接猜那個最接近的項,**不離十!

例25:1,2,6,16,44,()

a.66 b。84 c。88 d。120

猜:增幅一般,下意識地做了差有1,4,10,28。再做差3,6,18,下一項或許是(6+18)*2=42,或許是6*18=108,不論是哪個,原數列的下一項都大於100,直接猜d。

例26:0.,0,1,5,23,()

a.119 b。79 c 63 d 47

猜:首兩項一樣,明顯是一個遞推數列,而從1,5遞推到25必然要用乘法,而5*23=115,猜最接近的選項119

第四蒙:利用選項之間的關係蒙。

例27:0,9,5,29,8,67,17,(),()

a.125,3 b129,24 c 84,24 d172 83

猜:首先注意到b,c選項中有共同的數值24,立馬會心一笑,知道這是陰險的出題人故意設定的障礙,而又恰恰是給我們的線索,第二個括號一定是24!而根據之前總結的規律,雙括號一定是隔項成規律,我們發現偶數項9,29,67,()後項都是前項的兩倍左右,所以猜129,選b

例28:0,3,1,6,√2,12,(),(),2,48

a.√3,24 b。√3,36 c 2,24 d√2,36

猜:同上題理,第一個括號肯定是√3!而雙括號隔項成規律,3,6,12,易知第二個括號是24,很快選出a

數字推理13,1,112,,數字推理13,1,112,23,716,A524B73C1756D1348請列出解答過程,謝謝!

選 d1 3,1 11 12,2 3,7 16化為1 3,3 3,11 3 4 2 3,21 3 16 再提取1 3,得 1,3,11 4,2,21 16 再化為1 1,6 2,11 4,16 8,21 16顯然an 5n 4 2 n 1 即原通項式an 1 3 an 1 3 5n 4 2 n 1 ...

數字推理3,4,8,24,,數字推理3,4,8,24,88,?

3444 3 2 0 8 4 2 2 24 8 2 4 88 24 2 6 88 2 8 344 它們間隔數字的差是1,4,16,64是4的平方 下一個是344 樓上說的很對。下一個差應該是4的4次方256,256 88 344 3乘8為第四個24,4乘24為第五個88,8乘88為第六個704,數字...

數字推理2,3,5,,數字推理2,3,5,11,46,

2 3 1 5 相差1 1 3 5 4 11 相差2 2 5 11 9 46 相差3 3 所以後一個數是 11 46 4 4 250 相差4 4 所以2,3,5,11,46,250 答案已經有人說了,我就不說了.怎樣快速的找到規律呢?首先,先看看數字之間有無加減乘除的規律,如果沒有,就找這些數有無平...