數學史方面的,數學史上有哪些著名的經典故事?

2021-03-03 21:13:57 字數 4515 閱讀 4429

1樓:心飛翔

數學文化是人類文化的重要組成部分,是以數學科學體系為核心,以數學的思想、觀念、精神、知識、方法、技術、理論、數學發展史等為主要內容的一個文化體系.它是隨著數學的發展而不斷地豐富著自身的內容.本文闡述了在中學數學教學中滲透數學文化的意義,分析當前中學數學在教學上存在的一些問題和原因,由此提出中學數學教學滲透數學文化的四條途徑:

轉變教師教學理念;創造良好學習環境;設計新穎教學過程;形成監督反饋機制.

數學史上有哪些著名的經典故事?

2樓:可愛

尼爾斯·亨利克·阿貝爾

(2023年8月5日-2023年4月6日),挪威數學家,在很多數學領域做出了開創性的工作。他最著名的一個結果是首次完整給出了高於四次的一般代數方程沒有一般形式的代數解的證明。這個問題是他那時最著名的未解決問題之一,懸疑達250多年。

他也是橢圓函式領域的開拓者,阿貝爾函式的發現者。儘管阿貝爾成就極高,卻在生前沒有得到認可,他的生活非常貧困。

在2023年冬天,阿貝爾的病逐漸嚴重起來。在他聖誕節去芬羅蘭(froland)探他的未婚妻克萊利·肯姆普(crelly kemp)期間,病情便更惡化。到2023年1月時,他已知自己壽命不長,出血的症狀已無法否認。

直至2023年4月6日凌晨,阿貝爾去世了,他的未婚妻堅持不要他人之助照顧阿貝爾,「單獨佔有這最後的時刻」。

數學歷史上重大事件 10

3樓:匿名使用者

第一次數學危機

起因00畢達哥拉斯學派主張「數」是萬物的本原、始基,而宇宙中一切現象都可歸結為整數或整數之比。在希帕索斯悖論發現之前,人們僅認識到自然數和有理數,有理數理論成為佔統治地位的數學規範,希帕索斯發現的無理數,暴露了原有數學規範的侷限性。由此看來,希帕索斯悖論是由於主觀認識上的錯誤而造成的。

經過00公元前5世紀,畢達哥拉斯學派的成員希帕索斯(470b.c.前後)發現:

等腰直角三角形斜邊與一直角邊是不可公度的,它們的比不能歸結為整數或整數之比。這一發現不僅嚴重觸犯了畢達哥拉斯學派的信條,同時也衝擊了當時希臘人的普遍見解,因此在當時它就直接導致了認識上的「危機」。希帕索斯的這一發現,史稱「希帕索斯悖論」,從而觸發了數學史上的第一次危機。

影響00希帕索斯的發現,促使人們進一步去認識和理解無理數。但是,基於生產和科學技術的發展水平,畢達哥拉斯學派及以後的古希臘的數學家們沒有也不可能建立嚴格的無理數理論,他們對無理數的問題基本上採取了迴避的態度,放棄對數的算術處理,代之以幾何處理,從而開始了幾何優先發展的時期,在此後兩千年間,希臘的幾何學幾乎成了全部數學的基礎。當然,這種將整個數學**在幾何上的狹隘作法,對數學的發展也產生了不利的影響。

00希帕索斯的發現,說明直覺和經驗不一定靠得住,而推理和證明才是可靠的,這就導致了亞里士多德的邏輯體系和歐幾里德幾何體系的建立。

編輯本段

第二次數學危機

起因00十七世紀末,牛頓和萊布尼茲創立的微積分理論在實踐中取得了成 第二次數學危機功的應用,大部分數學家對於這一理論的可靠性深信不移。但是,當時的微積分理論主要是建立在無窮小分析之上的,而無窮小分析後來證明是包含邏輯矛盾的。

經過002023年,英國大主教貝克萊發表了《分析學者,或致一個不信教的數學家。其中審查現代分析的物件、原則與推斷是否比之宗教的神祕與教條,構思更為清楚,或推理更為明顯》一書,對當時的微積分學說進行了猛烈的抨擊。他說牛頓先認為無窮小量不是零,然後又讓它等於零,這違背了背反律,並且所得到的流數實際上是0/0,是「依靠雙重錯誤你得到了雖然不科學卻是正確的結果」,這是因為錯誤互相抵償的緣故。

在數學史上,稱之為「貝克萊悖論」。這一悖論的發現,在當時引起了一定的思想混亂,導致了數學史上的第二次危機,引起了持續200多年的微積分基礎理論的爭論。

00貝克萊攻擊「無窮小」,其目的是為宗教神學作論證,而作為「貝克萊悖論」本身,則是一個思想方法問題。因為數學要按照形式邏輯的不矛盾律來思維,不能在同一思維過程中既承認不等於零,又承認等於零。但是,事物的運動以其終點為極限,運動的結果在量上等於零,而在起點上則不等於零,這是事物運動的兩個方面,不應納入同一思維過程,如果把它們機械地聯結起來,必然會導致思維中的悖論。

貝克萊悖論產生的原因在於無窮小量的辨證性與數學方法的形式特性的矛盾。

影響00第二次數學危機的產物——分析基礎理論的嚴密化與集合論的創立。

00「貝克萊悖論」提出以後,許多著名數學家從各種不同的角度進行研究、探索,試圖把微積分重新建立在可靠的基礎之上。法國數學家柯西是數學分析的集大成者,通過《分析教程》(1821)、《無窮小計算講義》(1823)、《無窮小計算在幾何中的應用》(1826)這幾部著作,柯西建立起以極限為基礎的現代微積分體系。但柯西的體系仍有尚待改進之處。

比如:他關於極限的語言尚顯模糊,依靠了運動、幾何直觀的東西;缺乏實數理論。德國數學家魏爾斯特拉斯是數學分析基礎的主要奠基者之一,他改進了波爾查諾、阿貝爾、柯西的方法,首次用「ε—δ」方法敘述了微積分中一系列重要概念如極限、連續、導數和積分等,建立了該學科的嚴格體系。

「ε—δ」方法的提出和應用於微積分,標誌著微積分算術化的完成。為了建立極限理論的基本定理,不少數學家開始給出無理數的嚴格定義。2023年,魏爾斯特拉斯提出用遞增有界數列來定義無理數;2023年,戴德金提出用分割來定義無理數;2023年,康托爾提出用基本序列來定義無理數;等等。

這些定義,從不同的側面深刻揭示了無理數的本質,從而建立了嚴格的實數理論,徹底消除了希帕索斯悖論,把極限理論建立在嚴格的實數理論的基礎上,並進而導致集合論的誕生。

編輯本段

第三次數學危機

起因00魏爾斯特拉斯用排除無窮小量的辦法來解決貝克萊悖論,而在上世紀60年代,魯濱遜又把無窮小量請了回來,引進了超實數的概念,從而建立了非標準分析,同樣也能精確地描述微積分,進而也解決了貝克萊悖論。但必須注意到,貝克萊悖論只是在相對意義下得到了解決,因為實數理論的無矛盾性歸結為集合論的無矛盾性,而集合論的無矛盾性至今仍未徹底解決。

經過00經過第

一、二次數學危機,人們把數學基礎理論的無矛盾性,歸結為集 第三次數學危機合論的無矛盾性,集合論已成為整個現代數學的邏輯基礎,數學這座富麗堂皇的大廈就算竣工了。看來集合論似乎是不會有矛盾的,數學的嚴格性的目標快要達到了,數學家們幾乎都為這一成就自鳴得意。法國著名數學家龐加萊(1854—1912)於2023年在巴黎召開的國際數學家會議上誇耀道:

「現在可以說,(數學)絕對的嚴密性是已經達到了」。然而,事隔不到兩年,英國著名數理邏輯學家和哲學家羅素(1872—1970)即宣佈了一條驚人的訊息:集合論是自相矛盾的,並不存在什麼絕對的嚴密性!

史稱「羅素悖論」。2023年,羅素把這個悖論通俗化,成為理髮師悖論。羅素悖論的發現,無異於晴天劈靂,把人們從美夢中驚醒。

羅素悖論以及集合論中其它一些悖論,深入到集合論的理論基礎之中,從而從根本上危及了整個數學體系的確定性和嚴密性。於是在數學和邏輯學界引起了一場軒然大波,形成了數學史上的第三次危機。

00產生集合論悖論的原因在於集合的辨證性與數學方法的形式特性或者形而上學的思維方法的矛盾。如產生羅素悖論的原因,就在於概括原則造集的任意性與生成集合的客觀規則的非任意性之間的矛盾。

影響00第三次數學危機的產物——數理邏輯的發展與一批現代數學的產生。

00為了解決第三次數學危機,數學家們作了不同的努力。由於他們解決問題的出發點不同,所遵循的途徑不同,所以在本世紀初就形成了不同的數學哲學流派,這就是以羅素為首的邏輯主義學派、以布勞威爾(1881—1966)為首的直覺主義學派和以希爾伯特為首的形式主義學派。這三大學派的形成與發展,把數學基礎理論研究推向了一個新的階段。

三大學派的數學成果首先表現在數理邏輯學科的形成和它的現代分支——證明論等——的形成上。

00為了排除集合論悖論,羅素提出了型別論,策梅羅提出了第一個集合**理系統,後經弗倫克爾加以修改和補充,得到常用的策梅羅——弗倫克爾集合**理體系,以後又經伯奈斯和哥德爾進一步改進和簡化,得到伯奈斯——哥德爾集合**理體系。希爾伯特還建立了元數學。作為對集合論悖論研究的直接成果是哥德爾不完全性定理。

00美國傑出數學家哥德爾於本世紀30年代提出了不完全性定理。他指出:一個包含邏輯和初等數論的形式系統,如果是協調的,則是不完全的,亦即無矛盾性不可能在本系統內確立;如果初等算術系統是協調的,則協調性在算術系統內是不可能證明的。

哥德爾不完全性定理無可辯駁地揭示了形式主義系統的侷限性,從數學上證明了企圖以形式主義的技術方法一勞永逸地解決悖論問題的不可能性。它實際上告訴人們,任何想要為數學找到絕對可靠的基礎,從而徹底避免悖論的種種企圖都是徒勞無益的,哥德爾定理是數理邏輯、人工智慧、集合論的基石,是數學史上的一個里程碑。美國著名數學家馮·諾伊曼說過:

「哥德爾在現代邏輯中的成就是非凡的、不朽的——它的不朽甚至超過了紀念碑,它是一個里程碑,在可以望見的地方和可以望見的未來中永遠存在的紀念碑」。

00時至今日,第三次數學危機還不能說已從根本上消除了,因為數學基礎和數理邏輯的許多重要課題還未能從根本上得到解決。然而,人們正向根本解決的目標逐漸接近。可以預料,在這個過程中還將產生許多新的重要成果。

00發現和提出悖論並加以研究,對於數學基礎、邏輯學和哲學都有重要意義。正如塔斯基(1901— )所指出的:「必須強調的是,悖論在建立現代演繹科學的基礎上佔有一個特別重要的地位。

正如集合論的悖論,特別是羅素悖論成為邏輯和數學相容性形式化的起點一樣,撒謊者悖論及其語義學悖論導致了理論語義學的發展。」

有哪些非常經典的關於大數學家,數學史,數學故事的書

數學和數學家的故事 1 美 李學數 1 古今數學思想 作者為美國數學家m.klein,這是一套極好的數學史資料,很適合數學專業的學生,工作者閱讀。應列為數學專業的必讀書。2 數學史 作者為英國博士scott,該書對某些問題有獨到的見解。3 數學簡史 作者為美國數學家stuik,精煉,獨特。該書薄薄不...

中國數學上的牛頓是哪個科學家,中國數學史上的牛頓之稱是誰

劉徽是魏晉期間偉大的數學家,中國古典數學理論的奠基人之一,是中國最早明確主張用邏輯推理的方式來論證數學命題的人,被稱作 中國數學史上的牛頓 請點選輸入 描述 劉徽是公元三世紀世界上最傑出的數學家,他在公元263年撰寫的著作 九章算術注 以及後來的 海島算經 是我國最寶貴的數學遺產,從而奠定了他在中國...

數學危機一共有幾次,數學史上的三次危機是什麼?

數學危機一共有三次。在數學的發展史上,大大小小的矛盾出現過很多,但很少能威脅到整個數學基礎理論,甚至引起危機。即便是千百年來人們對歐幾里得幾何公理第五公設的疑惑,也不曾造成數學上的危機,且最終成就了羅巴切夫斯基幾何和黎曼幾何。數學史上共出現三次數學危機,每次都是由於悖論的發現而深刻和廣泛的影響了數學...