虛數是如何產生的,虛數概念是如何誕生的

2021-03-03 21:18:13 字數 5005 閱讀 6711

1樓:廣西師範大學出版社

「虛數」這個名詞,聽起來好像「虛」,實際上卻非常「實」。

虛數是在解方程時產生的。求解方程時,常常需要將數開平方。如果被開方數不是負數,可以算出要求的根;如果是負數怎麼辦呢?

由於虛數闖進數學領域時,人們對它的實際用處一無所知,在實際生活中似乎也沒有用複數來表達的量,因此,在很長一段時間裡,人們對虛數產生了種種懷疑和誤解。笛卡爾稱「虛數」的本意是指它是虛假的;萊布尼茲在公元18世紀初則認為:「虛數是美妙而奇異的神祕隱蔽所,它幾乎是既存在又不存在的兩棲物」。

尤拉儘管在許多地方用了虛數,但又說一切形如、的數學式都是不可能有的,純屬虛幻的。

尤拉之後,挪威一個測量學家維塞爾,提出把複數a+bi用平面上的點(a,b)來表示。後來,高斯提出了複平面的概念,終於使複數有了立足之地,也為複數的應用開闢了道路。現在,複數一般用來表示向量(有方向的數量),這在水力學、地圖學、航空學中的應用是十分廣泛的。

虛數越來越顯示出其豐富的內容,真是:虛數不虛!

虛數概念是如何誕生的?

2樓:返老還童好麼

虛數是指平方是負數的數。虛數這個名詞是17世紀著名數學家笛卡爾創制,因為當時的觀念認為這是真實不存在的數字。後來發現虛數可對應平面上的縱軸,與對應平面上橫軸的實數同樣真實。

3樓:匿名使用者

虛數的產生是為了解一元二

次方程。理論上每個一元二次方程都有兩個解,而一些一元二次方程在實數域上無解。這才產生了虛數的概念

一元二次方程ax2+bx+c = 0,當判別式小於0時,在實數域上是無解的。但是並不代表方程無解

最明顯的就是x2+1 = 0

虛數如何產生的,意義是什麼

4樓:丁亭晚史姬

我們可以在平面直角座標系中畫出虛數系統。如果

利用橫軸表示全體實數,那麼縱軸即可表示虛數。整個平面上每一點對應著一個複數,稱為複平面。橫軸和縱軸也改稱為實

虛數軸和虛軸。

不能滿足於上述影象解釋的同學或學者可參考以下題目和說明:

若存在一個數,它的倒數等於它的相反數(或者它的倒數的相反數為其自身),這個數是什麼形式?

根據這一要求,可以給出如下方程:-x=

(1/x)

不難得知,這個方程的解x=i

(虛數單位)

由此,若有代數式

t'=ti,我們將i理解為從t的單位到t'的單位之間的轉換單位,則t'=ti將被理解為

-t'=

1/t即t'=

-1/t

這一表示式在幾何空間上的意義不大,但若配合狹義相對論,在時間上理解,則可以解釋若相對運動速度可以大於光速c,相對時間間隔產生的虛數值,實質上是其實數值的負倒數。也就是所謂回到過去的時間間隔數值可以由此計算出來。

虛數是如何誕生的?有什麼實際應用?

5樓:匿名使用者

虛數是為了滿足給負數開平方根的目的設定的。

在實數範圍內,負數是沒有平方根的。

為了讓負數也能開平方根,人們設定了一個虛數單位i,規定i=√(-1)這樣負數也能開平方根了。

至於虛數的實際應用,我知道的只有在電工學中,計算交流電十分有用。

什麼是真實的虛數?

6樓:易書科技

「虛數」這個名詞,聽起來好像「虛」,實際上卻非常「實」。

虛數是在解方

程時產生的。求解方程時,常常需要將數開平方。如果被開方數不是負數,可以算出要求的根;如果是負數怎麼辦呢?

譬如,方程x2+1=0,x2=-1,x=±-1。那麼,-1有沒有意義呢?在很久之前,大多數數學家認為負數沒有平方恨。

到了16世紀中葉,義大利數學家卡爾丹發表了《**》這一數學著作,介紹了三次方程的求根公式。他不僅討論了正根和負根,還討論了虛數根。如解x2-15x+4=0這一方程時,依據他的求根公式,會得到:

x=3-2+-121+3-2-121

其中-121就是負數的平方根。卡爾丹寫出了負數的平方根,但他認為這也僅僅是形式表示而已。說明他對負數平方根的性質並不瞭解。

2023年,法國數學家笛卡爾開始用「實數」、「虛數」兩個名詞。2023年,瑞士數學家開始用符號i=-1表示虛數結合起來,寫成a+bi形式(a、b)為實數,稱為複數。

由於虛數闖進數的領域時,人們對它的實際用處一無所知。在實際生活中似乎也沒有用複數來表達的量,因此,在很長一段時間裡,人們對虛數產生過種種懷疑和誤解;笛卡爾稱「虛數」的本意是指它是虛假的;萊布尼茲在公元18世紀初則認為:「虛數是美妙而奇異的神靈隱蔽所,它幾乎是既存在又不存在的兩棲物。

」尤拉儘管是許多地方用了虛數,但又說一切形如-1、-2的數學式都是不可能有的,純屬虛幻的。

尤拉之後,挪威一個測量學家維塞爾,提出把複數a+bi用平面上的點(a、b)來表示。後來,高斯提出了複平面的概念,終於使複數有了立足之地,也為複數的應用開闢了道路。現在,複數一般用來表示向量(有方向的數量),這在水力學、地圖學、航空學中的應用是十分廣泛的。

虛數越來越顯示出其豐富的內容,真是:虛數不虛!

7樓:匿名使用者

實數可理解為一維數,虛數可理解為正交數,即垂直於實軸的數,也就是(ⅰ⊥1),特別重要的是: ( ⅰ丄1 )不是人為規定,而是數學邏輯的產物。所以複數稱為二維數。

你問什麼是真實的虛數?我的理解: 垂直於實軸的數就是虛數。

因此虛數的《虛》不是虛無飄渺,與日常用語 「虛無、虛幻」 沒有任何關係。(-1)開平方開出了空間一個新維度,這個新維度⊥實軸且稱為虛軸。複平面上的數由實數與虛陣列合而成,(a+ⅰb) 稱為複數。

複平面與二維向量平面有的方面等價,但不能認為它們完全等價,單位虛數( ⅰ )可以進行很抽象的運算,例如( ⅰ^ⅰ^ⅰ );單位向量不可進行這些運算。

8樓:天天快樂的小布

可能你的平方符號沒打上去,糾正下,i²=-1

複數是怎麼產生的?

9樓:影子

人們在生活中經常會遇到各種相反意義的量。比如,在記賬時有餘有虧;在計算糧倉存米時,有時要記進糧食,有時要記出糧食。為了方便,人們就考慮了相反意義的數來表示。

於是人們引入了正負數這個概念,把餘錢進糧食記為正,把虧錢、出糧食記為負。可見正負數是生產實踐中產生的。

據史料記載,早在兩千多年前,中國就有了正負數的概念,掌握了正負數的運演算法則。人們計算的時候用一些小竹棍擺出各種數字來進行計算。比如,356擺成||| ,3056擺成等等。

這些小竹棍叫做「算籌」算籌也可以用骨頭和象牙來製作。

中國三國時期的學者劉徽在建立負數的概念上有重大貢獻。劉徽首先給出了正負數的定義,他說:「今兩算得失相反,要令正負以名之。

」意思是說,在計算過程中遇到具有相反意義的量,要用正數和負數來區分它們。

劉徽第一次給出了正負區分正負數的方法。他說:「正算赤,負算黑;否則以斜正為異」意思是說,用紅色的小棍擺出的數表示正數,用黑色的小棍擺出的數表示負數;也可以用斜擺的小棍表示負數,用正擺的小棍表示正數。

中國古代著名的數學專著《九章算術》(成書於公元一世紀)中,最早提出了正負數加減法的法則:「正負數曰:同名相除,異名相益,正無入負之,負無入正之;其異名相除,同名相益,正無入正之,負無入負之。

」這裡的「名」就是「號」,「除」就是「減」,「相益」、「相除」就是兩數的絕對值「相加」、「相減」,「無」就是「零」。

用現在的話說就是:「正負數的加減法則是:同符號兩數相減,等於其絕對值相減,異號兩數相減,等於其絕對值相加。

零減正數得負數,零減負數得正數。異號兩數相加,等於其絕對值相減,同號兩數相加,等於其絕對值相加。零加正數等於正數,零加負數等於負數。

」這段關於正負數的運演算法則的敘述是完全正確的,與現在的法則完全一致!負數的引入是中國數學家傑出的貢獻之一。

用不同顏色的數表示正負數的習慣,一直保留到現在。現在一般用紅色表示負數,報紙上登載某國經濟上出現赤字,表明支出大於收入,財政上虧了錢。

負數是正數的相反數。在實際生活中,我們經常用正數和負數來表示意義相反的兩個量。夏天武漢氣溫高達42°c,你會想到武漢的確象火爐,冬天哈爾濱氣溫-32°c一個負號讓你感到北方冬天的寒冷。

在現今的中小學教材中,負數的引入,是通過算術運算的方法引入的:只需以一個較小的數減去一個較大的數,便可以得到一個負數。這種引入方法可以在某種特殊的問題情景中給出負數的直觀理解。

而在古代數學中,負數常常是在代數方程的求解過程中產生的。對古代巴比倫的代數研究發現,巴比倫人在解方程中沒有提出負數根的概念,即不用或未能發現負數根的概念。3世紀的希臘學者丟番圖的著作中,也只給出了方程的正根。

然而,在中國的傳統數學中,已較早形成負數和相關的運演算法則。

除《九章算術》定義有關正負運算方法外,東漢末年劉烘(公元206年)、宋代揚輝(2023年)也論及了正負數加減法則,都與九章算術所說的完全一致。特別值得一提的是,元代朱世傑除了明確給出了正負數同號異號的加減法則外,還給出了關於正負數的乘除法則。他在演算法啟蒙中,負數在國外得到認識和被承認,較之中國要晚得多。

在印度,數學家婆羅摩笈多於公元628年才認識負數可以是二次方程的根。而在歐洲14世紀最有成就的法國數學家丘凱把負數說成是荒謬的數。直到十七世紀荷蘭人日拉爾(2023年)才首先認識和使用負數解決幾何問題。

與中國古代數學家不同,西方數學家更多的是研究負數存在的合理性。16、17世紀歐洲大多數數學家不承認負數是數。帕斯卡認為從0減去4是純粹的胡說。

帕斯卡的朋友阿潤德提出一個有趣的說法來反對負數,他說(-1):1=1:(-1),那麼較小的數與較大的數的比怎麼能等於較大的數與較小的數比呢?

直到2023年,連萊布尼茲也承認這種說法合理。英國數學家瓦里承認負數,同時認為負數小於零而大於無窮大(2023年)。他對此解釋到:

因為a>0時,英國著名代數學家德·摩根 在2023年仍認為負數是虛構的。他用以下的例子說明這一點:「父親56歲,其子29歲。

問何時父親年齡將是兒子的二倍?」他列方程56+x=2(29+x),並解得x=-2。他稱此解是荒唐的。

當然,歐洲18世紀排斥負數的人已經不多了。隨著19世紀整數理論基礎的建立,負數在邏輯上的合理性才真正建立。

10樓:你最老大

4的#70*次方是 -i.........

虛數和純虛數的區別,實數虛數的概念,純虛數和虛數的區別

一 性質不同 1 純虛數 一個實數乘以i稱為純虛數。2 虛數 在複數域中,負數 1的平方根記為i 即i 1 二 計算方式不同 1 純虛數計算方式 當a 0,b 0時,叫作純虛數。2 虛數計算方式 當b 0時,叫作虛數。三 表達形式不同 1 純虛數表達形式 z bi b 0 2 虛數表達形式 a a ...

什麼是虛數,什麼是虛數?虛數的定義是什麼?

在數學裡,將平方是負數的數定義為純虛數。所有的虛數都是複數。這種數有一個專門的符號 i imaginary 它稱為虛數單位。定義為i 2 1。但是虛數是沒有算術根這一說的,所以 1 i。對於z a bi,也可以表示為e的ia次方的形式,其中e是常數,i為虛數單位,a為虛數的幅角,即可表示為z cos...

i是什麼數,是虛數,還是純虛數,還是實數

虛數,i的平方等於 1,也是虛數的基本單位。整數的單位是1 解析 i是虛數 i是純虛數 i不是實數 數學問題什麼是實數,虛數純虛數 實數 有理數和無理數的總稱.其中無理數就是無限不迴圈小數,有理數就包括整數和分數.虛數 在數學裡,將平方是負數的數定義為純虛數.所有的虛數都是複數.這種數有一個專門的符...