1樓:楊子電影
樹轉換成二叉樹,根節點是沒有右孩子的,這由轉換規則應該不難理解,且轉換規則是唯一的,所以轉換成的二叉樹是唯一的。
一棵深度為k,且有2^k-1個結點的二叉樹,稱為滿二叉樹。這種樹的特點是每一層上的結點數都是最大結點數。
而在一棵二叉樹中,除最後一層外,若其餘層都是滿的,並且或者最後一層是滿的,或者是在右邊缺少連續若干結點,則此二叉樹為完全二叉樹。具有n個結點的完全二叉樹的深度為floor(log2n)+1。深度為k的完全二叉樹,至少有2k-1個葉子結點,至多有2k-1個結點。
對樹的一種最基本的運算,所謂遍歷二叉樹,就是按一定的規則和順序走遍二叉樹的所有結點,使每一個結點都被訪問一次,而且只被訪問一次。由於二叉樹是非線性結構,因此,樹的遍歷實質上是將二叉樹的各個結點轉換成為一個線性序列來表示。
設l、d、r分別表示遍歷左子樹、訪問根結點和遍歷右子樹, 則對一棵二叉樹的遍歷有三種情況:dlr(稱為先根次序遍歷),ldr(稱為中根次序遍歷),lrd (稱為後根次序遍歷)。
把一棵樹轉換為二叉樹後,這棵樹的形態是唯一的嗎
2樓:木葉之窗
樹到二叉樹的轉換
除了根節點的兄弟結點之間連線,然後去掉初長子之外的連線(得出來的樹沒有右子樹)
森林轉化為二叉樹的步驟
(1)先將森林中的每棵樹變為二叉樹
(2)再將各二叉樹的根節點視為兄弟從左至右連在一起,最後調整一下位置,就形成了一顆二叉樹。(有左子樹又有右子樹)
3樓:諫許阿微
應該問的是這棵二叉樹形態是唯一的吧,這個只要轉換規則一致,結果自然唯一
樹和二叉樹的基本知識?
4樓:匿名使用者
二叉樹在電腦科學中,二叉樹是每個結點最多有兩個子樹的有序樹。通常子樹的根被稱版
作「權左子樹」(left subtree)和「右子樹」(right subtree)。二叉樹常被用作二叉查詢樹和二叉堆。二叉樹的每個結點至多隻有二棵子樹(不存在度大於2的結點),二叉樹的子樹有左右之分,次序不能顛倒。
二叉樹的第i層至多有2的(i-1)次方個結點;深度為k的二叉樹至多有2的k次
5樓:匿名使用者
樹或者森林變成 二叉樹 記住「左孩子,右兄弟」 遍歷的先序中序後序都是針對根而言的 連線都是用指標至於一些公式就參見樓上就行了
求資料結構樹與二叉樹轉換c語言**
6樓:匿名使用者
那個叫二叉樹啊
樹是一種重要的非線性資料結構,直觀地看,它是資料元素(在樹中稱為結點)按分支關係組織起來的結構,很象自然界中的樹那樣。樹結構在客觀世界中廣泛存在,如人類社會的族譜和各種社會組織機構都可用樹形象表示。樹在計算機領域中也得到廣泛應用,如在編譯源程式如下時,可用樹表示源源程式如下的語法結構。
又如在資料庫系統中,樹型結構也是資訊的重要組織形式之一。一切具有層次關係的問題都可用樹來描述。
一、樹的概述
樹結構的特點是:它的每一個結點都可以有不止一個直接後繼,除根結點外的所有結點都有且只有一個直接前趨。以下具體地給出樹的定義及樹的資料結構表示。
(一)樹的定義
樹是由一個或多個結點組成的有限集合,其中:
⒈必有一個特定的稱為根(root)的結點;
⒉剩下的結點被分成n>=0個互不相交的集合t1、t2、......tn,而且, 這些集合的每一個又都是樹。樹t1、t2、......tn被稱作根的子樹(subtree)。
樹的遞迴定義如下:(1)至少有一個結點(稱為根)(2)其它是互不相交的子樹
1.樹的度——也即是寬度,簡單地說,就是結點的分支數。以組成該樹各結點中最大的度作為該樹的度,如上圖的樹,其度為3;樹中度為零的結點稱為葉結點或終端結點。
樹中度不為零的結點稱為分枝結點或非終端結點。除根結點外的分枝結點統稱為內部結點。
2.樹的深度——組成該樹各結點的最大層次,如上圖,其深度為4;
3.森林——指若干棵互不相交的樹的集合,如上圖,去掉根結點a,其原來的二棵子樹t1、t2、t3的集合就為森林;
4.有序樹——指樹中同層結點從左到右有次序排列,它們之間的次序不能互換,這樣的樹稱為有序樹,否則稱為無序樹。
5.樹的表示
樹的表示方法有許多,常用的方法是用括號:先將根結點放入一對圓括號中,然後把它的子樹由左至右的順序放入括號中,而對子樹也採用同樣的方法處理;同層子樹與它的根結點用圓括號括起來,同層子樹之間用逗號隔開,最後用閉括號括起來。如上圖可寫成如下形式:
(a(b(e(k,l),f),c(g),d(h(m),i,j)))
5. 2 二叉樹
1.二叉樹的基本形態:
二叉樹也是遞迴定義的,其結點有左右子樹之分,邏輯上二叉樹有五種基本形態:
(1)空二叉樹——(a);
(2)只有一個根結點的二叉樹——(b);
(3)右子樹為空的二叉樹——(c);
(4)左子樹為空的二叉樹——(d);
(5)完全二叉樹——(e)
注意:儘管二叉樹與樹有許多相似之處,但二叉樹不是樹的特殊情形。
2.兩個重要的概念:
(1)完全二叉樹——只有最下面的兩層結點度小於2,並且最下面一層的結點都集中在該層最左邊的若干位置的二叉樹;
(2)滿二叉樹——除了葉結點外每一個結點都有左右子女且葉結點都處在最底層的二叉樹,。
3.二叉樹的性質
(1) 在二叉樹中,第i層的結點總數不超過2^(i-1);
(2) 深度為h的二叉樹最多有2^h-1個結點(h>=1),最少有h個結點;
(3) 對於任意一棵二叉樹,如果其葉結點數為n0,而度數為2的結點總數為n2,
則n0=n2+1;
(4) 具有n個結點的完全二叉樹的深度為int(log2n)+1
(5)有n個結點的完全二叉樹各結點如果用順序方式儲存,則結點之間有如下關係:
若i為結點編號則 如果i<>1,則其父結點的編號為i/2;
如果2*i<=n,則其左兒子(即左子樹的根結點)的編號為2*i;若2*i>n,則無左兒子;
如果2*i+1<=n,則其右兒子的結點編號為2*i+1;若2*i+1>n,則無右兒子。
4.二叉樹的儲存結構:
(1)順序儲存方式
type node=record
data:datatype
l,r:integer;
end;
var tr:array[1..n] of node;
(2)連結串列儲存方式,如:
type btree=^node;
node=record
data:datatye;
lchild,rchild:btree;
end;
5.普通樹轉換成二叉樹:凡是兄弟就用線連起來,然後去掉父親到兒子的連線,只留下父母到其第一個子女的連線。
二叉樹很象一株倒懸著的樹,從樹根到大分枝、小分枝、直到葉子把資料聯絡起來,這種資料結構就叫做樹結構,簡稱樹。樹中每個分叉點稱為結點,起始結點稱為樹根,任意兩個結點間的連線關係稱為樹枝,結點下面不再有分枝稱為樹葉。結點的前趨結點稱為該結點的"雙親",結點的後趨結點稱為該結點的"子女"或"孩子",同一結點的"子女"之間互稱"兄弟"。
二叉樹:二叉樹是一種十分重要的樹型結構。它的特點是,樹中的每個結點最多隻有兩棵子樹,即樹中任何結點的度數不得大於2。
二叉樹的子樹有左右之分,而且,子樹的左右次序是重要的,即使在只有一棵子樹的情況下,也應分清是左子樹還是右子樹。定義:二叉樹是結點的有限集合,這個集合或是空的,或是由一個根結點和兩棵互不相交的稱之為左子樹和右子樹的二叉樹組成。
(三)完全二叉樹
對滿二叉樹,從第一層的結點(即根)開始,由下而上,由左及右,按順序結點編號,便得到滿二叉樹的一個順序表示。據此編號,完全二叉樹定義如下:一棵具有n個結點,深度為k的二叉樹,當且僅當所有結點對應於深度為k的滿二叉樹中編號由1至n的那些結點時,該二叉樹便是完全二叉樹。
圖4是一棵完全二叉樹。
三、二叉樹的遍歷
遍歷是對樹的一種最基本的運算,所謂遍歷二叉樹,就是按一定的規則和順序走遍二叉樹的所有結點,使每一個結點都被訪問一次,而且只被訪問一次。由於二叉樹是非線性結構,因此,樹的遍歷實質上是將二叉樹的各個結點轉換成為一個線性序列來表示。
設l、d、r分別表示遍歷左子樹、訪問根結點和遍歷右子樹, 則對一棵二叉樹的遍歷有三種情況:dlr(稱為先根次序遍歷),ldr(稱為中根次序遍歷),lrd (稱為後根次序遍歷)。
(1)先序遍歷
訪問根;按先序遍歷左子樹;按先序遍歷右子樹
(2)中序遍歷
按中序遍歷左子樹;訪問根;按中序遍歷右子樹
(3)後序遍歷
按後序遍歷左子樹;按後序遍歷右子樹;訪問根
設一棵完全二叉樹有結點,則該完全二叉樹的深度為,有葉子結點
256。二叉樹 binary tree 是指樹中節點的度不大於2的有序樹,它是一種最簡單且最重要的樹。二叉樹的遞迴定義為 二叉樹是一棵空樹,或者是一棵由一個根節點和兩棵互不相交的,分別稱作根的左子樹和右子樹組成的非空樹 左子樹和右子樹又同樣都是二叉樹 二叉樹 binary tree 是樹形結構的一個...
什麼是《平衡二叉樹》,平衡二叉樹定義
形態勻稱的二叉樹稱為平衡二叉樹 balanced binary tree 其嚴格定義是 一棵空樹是平衡二叉樹 若 t是一棵非空二叉樹,其左 右子樹為tl和 tr,令hl和 hr分別為左 右子樹的深度。當且僅當 tl tr都是平衡二叉樹 hl hr 1 時,則 t是平衡二叉樹。我覺得平衡二叉樹,不一定...
判斷一棵二叉樹是否為二叉排序樹C資料結構
struct node node l node r static bool isorderedbtree node n,int cmp func node node if isorderedbtree n l,cmp func if n r 0 if isorderedbtree n r,cmp f...