高中階段為什麼要引入向量這個知識點

2021-03-04 09:19:34 字數 5803 閱讀 6933

1樓:不雨亦瀟瀟

這是從初copy等數學的代數運算(只有

bai大小的運算)向du高等數學的理論(擁有大小zhi和方向)轉變dao的一個分水嶺.望貴君好好學習研究.

向量最早的引入與物理有關.

在物理學以及我們平時生活中,許多量只要用數值就可以表示了,比如溫度,物體的質量,體積等.這些量稱之為標量.

而在物理學中,還有些量不只是與大小有關,還與方向有關.

比如力,位移等,這時候如果之用一個數比如10牛表示力,顯然是不夠清楚的.因為不知道這個力的方向.因此,我們要引入一個新的量.

這就是向量.這樣就可以更好清晰地研究物理問題.

(引入向量後,也使得一些原本比較複雜的數學幾何證明變得簡單了)

學習高等數學需要什麼高中基礎?

2樓:大大的

導數和函式、複變函式與積分、概率論、線性代數。

導數和函式要學好,這部分到大學還會進一步學習,大學微積分的學習,跟高中聯絡最緊密的就是函式導數和極限部分,這部分應該學好,空間幾何也用到一些。

複變函式與積分的學習,與高中的複數有一點關係,高中學的是基礎定義和部分應用,到大學會把微積分聯絡在一起深入學習,所以,學好複數部分對以後更好的學習有不少幫助。

概率論的學習,不再像高中是學習排和組合,當然學好這部分的概率和期望對以後理解很有幫助,概率論更多的是學習其他概率分佈模型。

線性代數的學習,是一門工程數學,解方程n元一次組,n維相量、矩陣等等,實際中應用廣泛,好好理解下相量空間,這門學科跟以前聯絡不多,好好學一定會學好的。

指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。

通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。

主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。工科、理科研究生考試的基礎科目。

3樓:匿名使用者

基本不等式知識,函式知識,三角函式公式等等,說實話高等數學和高中數學差別很大,高中的知識也基本難以運用到高等數學上,基本上是不需要什麼基礎的,進入大學學高數大家相當於都是零基礎開始

4樓:匿名使用者

三角函式、極限、導數

我覺得高數上課好好聽,高中基礎都是浮雲,加油

5樓:匿名使用者

函式的概念 ---> 高等數學主要講函式的微積分;

三角函式的相關公式 ---> 做定積分的時候需要一些三角函式代換;

集合的概念 ---> 多元函式微積分會用到一點;

數列的基本概念 ---> 學習數列極限,收斂性會用到;

都是高中數學中的一些基本概念。

6樓:榮山楊帆

學高數不需要什麼基礎啊,能考上說明基礎都行的,邊學邊補基礎完全沒問題的,我教的學生基本都是高中基礎很差,但是學高數也不會怎麼樣

7樓:幸運的

不需要高中什麼基礎了,如果要說高等數學和高中數學的聯絡的話,也只有微積分部分了。

不過就算高中不怎麼懂導數和定積分這些微積分內容,也可以直接學高等數學了,因為高等數學主要就是講微積分,並且一般高等數學教材都是從頭開始講的,相當於重新學。

8樓:匿名使用者

高中的函式、三角函式、對數、指數等基本函式

9樓:袁總大俠

高中的基本都需要啊,這無分專業,工科學的都一樣。尤其用到三角函式、導數的知識。

10樓:蘇子矝

買一本少學時的高等數學,應該是第四版,你高中數學只要沒掛科就沒什麼問題了,會求導,會高次方程組求解,會簡單的幾何知識,剩下的就是你的耐心和刷題的數目了。基礎好可以買新版的書。

11樓:匿名使用者

基礎知識儘量都學紮實的好。主要需要以下基礎:

1、導數和函式、複變函式與積分。

1、導數和函式要學好,這部分到大學還會進一步學習,大學微積分的學習,跟高中聯絡最緊密的就是函式導數和極限部分,這部分應該學好,空間幾何也用到一些。

2、複變函式與積分的學習,與高中的複數有一點關係,高中學的是基礎定義和部分應用,到大學會把微積分聯絡在一起深入學習,所以,學好複數部分對以後更好的學習有不少幫助。

高等數學指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。

廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。

通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。

12樓:我是一頭豬

數學,重要的是思想。

然而,高中數學給予了我們必要的初等數學的知識,如導數,將來發展極限

如將來的空間解析幾何

哪怕是最簡單的集合,將來也為數論做了一定的基礎。

高中數學書上公式所給的推導充滿了數學思想,很重要。

大學數學,或者叫高數,離不開最基礎的。

13樓:手機使用者

基礎知識儘量都學紮實的好。

⒈導數和函式要學好,這部分到大學還會進一步學習,大學微積分的學習,跟高中聯絡最緊密的就是函式導數和極限部分,這部分應該學好,空間幾何也用到一些。

⒉複變函式與積分的學習,與高中的複數有一點關係,高中學的是基礎定義和部分應用,到大學會把微積分聯絡在一起深入學習,所以,學好複數部分對以後更好的學習有不少幫助。

⒊概率論的學習,不再像高中是學習排和組合,當然學好這部分的概率和期望對以後理解很有幫助,概率論更多的是學習其他概率分佈模型。

⒋線性代數的學習,是一門工程數學,解方程n元一次組,n維相量、矩陣等等,實際中應用廣泛,好好理解下相量空間,這門學科跟以前聯絡不多,好好學一定會學好的。

總之,好學基礎知識,對你的深造學習很有幫助;專業不同,可能學的學科數學也有少許不同,不過不管怎樣,學好基礎知識不是件壞事,更多的體驗還要等你到了大學才能更好地感受。呵呵,希望對你有所幫助。

14樓:偉大的宇宙精神

我認為,學習高等數學(上下冊)所需要的最低高中數學基礎是:必修

1全部,必修2全部,必修4的三角函式和向量部分,必修5的數列部分,選修2-1的圓錐曲線和空間向量部分,選修2-2的複數部分,選修2-3的排列與組合部分,選修4-4全部。

15樓:匿名使用者

高中學的函式性質、三角函式誘導公式、導數

學習高等數學需要把高中數學掌握的什麼程度?

16樓:匿名使用者

高等數學應該在學好中學數學的基礎上學習,關係最密切的內容是三角函式、解析幾何。有些中學這兩部分內容沒有學好,甚至有些內容根本沒有學,例如三角函式裡的和差化積與積化和差公式,解析幾何裡的極座標,就有一些學校沒有學,而在大學講授高等數學時會直接用到這些知識,不可能再詳細講解這方面內容的。

現在的中學學了很多不該學的東西,又有很多該學的東西沒有學好,造成很多學生認為高等數學難學,這實際上是誤會。

高等數學裡的概念比初等數學裡多得多,有的還比較難理解,在正確理解概念的基礎上,高等數學裡的題目比現在中學裡讓學生做的初等數學題目容易多了,只要按部就班認真學習,學好高等數學其實是不困難的。

高等數學裡主要是微積分,你說的「商科」不知道是什麼性質的專業,是理科的還是文科的?如果是文科類專業,要求會低些,但是因為學生的基礎也差些,仍然需要化力氣才能學好的。

17樓:總得有個好名字

樓主是高中生還是大學生啊?作為一個過來人,高等數學包括微積分,線性代數,概率論和概率統計,就每一門科目而言,對應的高中知識有函式,求導,解方程組,向量,概率等等方面的內容,當然這些在高等數學裡面都是些基本的東西,高等代數只是在這些問題上有較深入的研究,只要高中掌握好,進入大學後應該沒有什麼難度。

樓主可以去一些書店買些高等數學的書看一下,其實不難的,不要被所謂的大學嚇到了

18樓:丨旋轉木馬灬

如果想做學術的話 建議數學分析+高等代數

高等數學+線性代數沒前途~~~~

學習高等數學需要什麼高中基礎?

19樓:飄飄記

基礎知識儘量都學紮實的好。主要需要以下基礎:

1、導數和函式、複變函式與積分。

2、導數和函式要學好,這部分到大學還會進一步學習,大學微積分的學習,跟高中聯絡最緊密的就是函式導數和極限部分,這部分應該學好,空間幾何也用到一些。

3、複變函式與積分的學習,與高中的複數有一點關係,高中學的是基礎定義和部分應用,到大學會把微積分聯絡在一起深入學習,所以,學好複數部分對以後更好的學習有不少幫助。

高等數學指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。

廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。

通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。

導數和函式要學好,這部分到大學還會進一步學習,大學微積分的學習,跟高中聯絡最緊密的就是函式導數和極限部分,這部分應該學好,空間幾何也用到一些。

指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數。

幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。

通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。

主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。工科、理科研究生考試的基礎科目。

20樓:河傳楊穎

1、導數和函式、複變函式與積分、概率論、線性代數。

2、複變函式與積分的學習,與高中的複數有一點關係,高中學的是基礎定義和部分應用,到大學會把微積分聯絡在一起深入學習,所以,學好複數部分對以後更好的學習有不少幫助。

3、概率論的學習,不再像高中是學習排和組合,當然學好這部分的概率和期望對以後理解很有幫助,概率論更多的是學習其他概率分佈模型。

4、線性代數的學習,是一門工程數學,解方程n元一次組,n維相量、矩陣等等,實際中應用廣泛,好好理解下相量空間,這門學科跟以前聯絡不多,好好學一定會學好的。

在中國理工科各類專業的學生(數學專業除外,數學專業學數學分析),學的數學較難,課本常稱「高等數學」;文史科各類專業的學生,學的數學稍微淺一些,課本常稱「微積分」。

理工科的不同專業,文史科的不同專業,深淺程度又各不相同。研究變數的是高等數學,可高等數學並不只研究變數。至於與「高等數學」相伴的課程通常有:

線性代數(數學專業學高等代數),概率論與數理統計(有些數學專業分開學)。

數學的計算性方面。在初等數學中甚至佔了主導的地位。它在高等數學中的地位也是明顯的,高等數學除了有很多理論性很強的學科之外,也有一大批計算性很強的學科,如微分方程、計算數學、統計學等。

在高度抽象的理論裝備下,這些學科才有可能處理現代科學技術中的複雜計算問題。

最基本的極限過程是數列和函式的極限。數學分析以它為基礎,建立了刻畫函式區域性和總體特徵的各種概念和有關理論,初步成功地描述了現實世界中的非均勻變化和運動。另外一些形式上更為抽象的極限過程,在別的數學學科中也都起著基本的作用。

還有許多學科的研究物件本身就是無窮多的個體,也就說是無窮集合,例如群、環、域之類及各種抽象空間。

為什麼高等數學中梯度中要引入向量

事實上是為了方便討論一些n元函式的性質而引入梯度這個概念的。一般的對專於f x1,x2,xn y,若屬f在 x1,x2,xn 處可微則定義f的梯度為n維歐幾里得空間中的一組線性無關標準基的和,設該組標準基為 e1,en grandf就等於f對各個變數偏導數與該有序基之積的和。只是為了方便討論在某個特...

為什麼向量的學習要引入座標?有什麼好處?主要用於解決什麼問題

向量中引入座標,這樣連線了代數和幾何,這就是像一個橋樑。在做解析幾何題時,有時會用到向量方法,通常都是用座標表示的。立體幾何的解題也有用空間向量的,將複雜的空間圖形轉化為代數問題。學習向量有什麼用,主要用於什麼方面在實際生活中的應用 有時候在幾何題和解析幾何的證明和運算上很有技巧 在生活中向量也有一...

為什麼法向量要設成NX,Y,

法向量設成n x,y,1 代表的是水平面的法向量,也就是垂直z軸的法向量,是法向量中的一種,其中1代表豎向 z 方向是常量單位1。現實中還存在多種法向量,例如法向量 1,y,z 代表垂直x軸平面的法向量。解 法向量是指與平面垂直的向量.一個平面有法向量無窮多個,但這些法向量都共線.根據線面垂直的判定...