分式的最簡公分母怎麼找

2021-08-14 12:56:00 字數 3064 閱讀 5294

1樓:匿名使用者

◆方法:其實這與小學時做異分母分數相加減時一樣,首先要找分母的最小公倍數.

而對於分式來說,找分母的最小公倍數,同樣的道理,首先要明白分母有哪些因式,這就需要明白各因式中的分母有哪些因式,求分母的最簡公分母,類似於分數加減時求分母的最小公倍數.

例題1: 1/(x+2) +3/(x²-4)-4/(x²-2x),試求本題的最簡公分母。

分析:本題屬於異分母分式的加減法,首先需要先“通分”,把各分式變為同分母。首先要把各個分母進行因式分解,找出各自分母中所含的因式,然後再求最簡公分母。

x+2無法再分解;

x²-4=(x+2)(x-2),即x²-4含有因式(x+2)和(x-2);

x²-2x=x(x-2),即x²-2x含有因式x和(x-2).

故本題中分式的最簡公分母為:x(x+2)(x-2)

例題2: 3/(x²-2x)+1/(x²-4x+4)+5/(x²+2x),試求最簡公分母。

分析:同理,先把每個分式的分母分解因式,找出各自分母中所含有因式,再求最簡公分母.

x²-2x=x(x-2),即x²-2x中含有x和(x-2)兩個因式;

x²-4x+4=(x-2)²,即x²-4x+4含有兩個因式(x-2);

x²+2x=x(x+2),即x²+2x中含有因式x和(x+2)。

所以,本題中的最簡公分母為x(x+2)(x-2)².

【總結:求幾個分式的最簡公分母時,首先要把分式中各個分母進行分解因式,最簡公分母為:各分母因式中"不同的因式與次數最高的相同因式的積".注意觀察例題1和2即可明白.】

2樓:匿名使用者

簡單點說

把各個分母都分解因式

各個係數的最小公倍數,就是公分母的係數

各個因式相乘(相同的因式取最高次冪)的結果,就是最簡公分母

3樓:數學好玩啊

根據唯一分解定理,可以把所有的分母寫成標準形式p1^n1p2^n2……pk^nk

對每個pi(1<=i<=k),取所有分母的最高次數,這樣得到的就是分母的最小公倍數,即公分母。

4樓:

通常取各分母系數的最小公倍數與字母因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母。

一般方法:①如果各分母都是單項式,那麼最簡公分母就是各系數的最小公倍數,相同字母的最高次冪,所有不同字母都寫在積裡。

②如果各分母都是多項式,就要先把他們分解因式,然後把每個因式化為和的形式

5樓:路非龍

定義:一般取各分母的所有因式的最高次冪的積作公分母,這叫做最簡公分母

方法:1、分母均為單項式:取整數係數的最小公倍數與相同字母的最高次冪的積,只在一個單項式中的字母,則連同它的指數作為最簡公分母的一部分

2、分母為多項式:先分解因式,再取整數係數的最小公倍數與相同字母的最高次冪的積

6樓:

處於分母位置的式子都乘到一塊

7樓:後晶延俊發

很簡單啊,對照每一個分母中的因式,出現了多次的,就找最高次冪。只出現一次的,就連同次數一次寫下,最後全部乘在一起就是最簡公分母,當然,別忘記了係數

如何在解分式方程中準確的找到最簡公分母

8樓:

1、算式中只有一項是分式,最簡公分母就是這個分式的分母。如算式的最簡公分母就是a+1。

2、算式中有幾個分式相加減,分母互為相反數,最簡公分母可取其中任何一個分母。如算式的最簡公分母可以是a–2b,也可以是2b–a 。

3、當算式中的幾個分母都是單項式時,最簡公分母則取係數的最小公倍數與所有字母的最高次冪的乘積。如算式的最簡公分母就是12abx2y2。

4、當算式中分式的幾個分母都是多項式時,則先把所有分母進行因式分解,最簡公分母則是每個因式的最高次冪的乘積。如算式的最簡公分母是4(x+y)(x–y)2。

9樓:庚雅彤

可以找兩個係數的最小公倍數,每個係數都要乘最小公倍數,切記不要忘了乘常數項

10樓:寧靜安然

記住下面三項規律:

兩個分母的係數最小公倍數作為最簡公分母的係數,相同底數的,取次數最高次冪。

單獨出現的字母或者多項式都要算入最簡公分母中。

11樓:來自龍山寺和氣的荷花

5、當算式中分式的分子與分母都有公因式時,可以先把這個分式約分,再根據情況確定

12樓:莫涵笑笑

從分母中找出最簡公分人可

13樓:匿名使用者

方法:其實這與小學時做異分母分數相加減時一樣,首先要找分母的最小公倍數.而對於分式來說,找分母的最小公倍數,同樣的道理,首先要明白分母有哪些因式,這就需要明白各因式中的分母有哪些因式,求分母的最簡公分母,類似於分數加減時求分母的最小公倍數.

例題1:

1/(x+2)

+3/(x²-4)-4/(x²-2x),試求本題的最簡公分母。分析:本題屬於異分母分式的加減法,首先需要先“通分”,把各分式變為同分母。

首先要把各個分母進行因式分解,找出各自分母中所含的因式,然後再求最簡公分母。x+2無法再分解;x²-4=(x+2)(x-2),即x²-4含有因式(x+2)和(x-2);x²-2x=x(x-2),即x²-2x含有因式x和(x-2).故本題中分式的最簡公分母為:

x(x+2)(x-2)例題2:

3/(x²-2x)+1/(x²-4x+4)+5/(x²+2x),試求最簡公分母。分析:同理,先把每個分式的分母分解因式,找出各自分母中所含有因式,再求最簡公分母.

x²-2x=x(x-2),即x²-2x中含有x和(x-2)兩個因式;x²-4x+4=(x-2)²,即x²-4x+4含有兩個因式(x-2);x²+2x=x(x+2),即x²+2x中含有因式x和(x+2)。所以,本題中的最簡公分母為x(x+2)(x-2)².【總結:

求幾個分式的最簡公分母時,首先要把分式中各個分母進行分解因式,最簡公分母為:各分母因式中"不同的因式與次數最高的相同因式的積".注意觀察例題1和2即可明白.】

14樓:

八年級如何找到最簡公分母?

五分之三和10分之1,的公分母是

五分之三和10分之1的公分母是10。分析如下 5分之3的分母是5,10分之1的分母是10,那麼5和10的最小公倍數是10 所以,五分之三和10分之1的最簡公分母是10。注 兩個分數的公分母有無數個,但最簡公分母只有1個。擴充套件資料 一 分數 分數是一個整數a和一個正整數b的不等於整數的比。分數表示...

不改變分式的值,使下列分式的分子與分母的最高次項的係數為正數

試題不改copy 變分式的值,使分子 分母最高次項的係數為正數,1 x1 x x2 x 1x2 x 1 x 1x2 x 1 考點 分式的基本性質 分析 首先將分子 分母均按同一字母的降冪排列,若第一項的係數為負,則添帶負號的括號 本題特別注意分子 分母和分式本身的符號的改變 解答 解 1 x1 x ...

寫出分母是12的所有最簡真分數,分母是五的,所有最簡真分數的和是?

12分之1 12分之5 12分之7 12分之11。解析 分子 分母只有公因數1的分數叫做最簡分數或者說分子和分母是互質數的分數,叫做最簡分數,又稱既約分數。真分數,指的是分子比分母小的分數。真分數的分數值小於一。如 1 2,3 5,8 9等等。等於1屬於假分數。真分數一般是在正數的範圍內研究的。概念...