求數的開方怎麼算,怎樣算一個數的開方

2022-02-23 21:01:17 字數 6484 閱讀 8457

1樓:匿名使用者

述求平方根的方法,稱為筆算開平方法,用這個方法可以求出任何正數的算術平方根,它的計算步驟如下:

1.將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開(豎式中的11'56),分成幾段,表示所求平方根是幾位數;

2.根據左邊第一段裡的數,求得平方根的最高位上的數(豎式中的3);

3.從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段陣列成第一個餘數(豎式中的256);

4.把求得的最高位數乘以20去試除第一個餘數,所得的最大整數作為試商(3×20除 256,所得的最大整數是 4,即試商是4);

5.用商的最高位數的20倍加上這個試商再乘以試商.如果所得的積小於或等於餘數,試商就是平方根的第二位數;如果所得的積大於餘數,就把試商減小再試(豎式中(20×3+4)×4=256,說明試商4就是平方根的第二位數);

6.用同樣的方法,繼續求平方根的其他各位上的數.

2樓:匿名使用者

嘸系用筆算出來的,一般常用的要自己用腦記的

怎樣算一個數的開方?

3樓:匿名使用者

比如136161這個數字,首先我們找到一個和136161的平方根比較接近的數,任選一個,比方說300到400間的任何一個數,這裡選350,作為代表。

我們計算0.5*(350+136161/350)得到369.5

然後我們再計算0.5*(369.5+136161/369.

5)得到369.0003,我們發現369.5和369.

0003相差無幾,並且,369^2末尾數字為1。我們有理由斷定369^2=136161

一般來說能夠開方開的盡的,用上述方法算一兩次基本結果就出來了。再舉個例子:計算469225的平方根。

首先我們發現600^2<469225<700^2,我們可以挑選650作為第一次計算的數。即算

0.5*(650+469225/650)得到685.9。而685附近只有685^2末尾數字是5,因此685^2=469225

對於那些開方開不盡的數,用這種方法算兩三次精度就很可觀了,一般達到小數點後好幾位。

實際中這種演算法也是計算機用於開方的演算法

4樓:蜜蜜公主

最簡單的當然是用計算器

開方怎麼算

5樓:胡八一通

舉個例子,1156是四位數,所以它的算術平方根的整數部分是兩位數,且易觀察出其中的十位數是3。於是問題的關鍵在於:如何求出它的個位數a?為此,我們從a所滿足的關係式來入手。

根據兩數和的平方公式,可以得到

1156=(30+a)^2=30^2+2×30a+a^2,

所以 1156-30^2=2×30a+a^2,

即 256=(30×2+a)a,

也就是說, a是這樣一個正整數,它與30×2的和,再乘以它本身,等於256。

為便於求得a,可用下面的豎式來進行計算:

根號上面的數3是平方根的十位數。將 256試除以30×2,得4(如果未除盡則取整數位).由於4與30×2的和64,與4的積等於256,4就是所求的個位數a。

豎式中的餘數是0,表示開方正好開盡。於是得到 1156=34^2, 或√1156=34. 上述求平方根的方法,稱為筆算開平方法,用這個方法可以求出任何正數的算術平方根,它的計算步驟如下:

開方的計算步驟

1.將被開方數的整數部分從個位起向左每隔兩位劃為一段,用「 ' 」這個符號分開(豎式中的11』56),分成幾段,表示所求平方根是幾位數;

2.根據左邊第一段裡的數,求得平方根的最高位上的數(豎式中的3);

3.從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段陣列成第一個餘數(豎式中的256);

4.把求得的最高位數乘以20去試除第一個餘數,所得的最大整數作為試商(20×3除256,所得的最大整數是 4,所以試商是4);

5.用商的最高位數的20倍加上這個試商再乘以試商,如果所得的積小於或等於餘數,試商就是平方根的第二位數;如果所得的積大於餘數,就把試商減小之後再試(豎式中(20×3+4)×4=256,說明試商4就是平方根的第二位數);

6.用相同的方法,繼續求平方根的其餘各位上的數。

如碰到開不盡的情況,可根據所要求的精確度求出它的近似值。例如求其近似值(精確到0.01),可列出上面右邊的豎式,並根據這個豎式得到。

筆算開平方運算較複雜,在實際中直接應用較少,但用這個方法可求出一個數的平方根的具有任意精確度的近似值。

6樓:丿浮誇

開方方法:

1、比如說我們計算根號10,有計算機的夥伴們可以按一下,結果3.1622776601683.......將要開方的數在小數點前後,每兩位進行分節。然後前後都可以補0哦。

2、然後從最左邊的節開始計算,由於是每兩位進行的分節,所以最左邊的數一定小等於99,所以就在10以內找到一個開方最大並且小於第一節的數,作為開方的第一個數。所以10開方得到的第一個值就是3

3、就像做除法一樣,10減去3的平方也就是9,餘數是1,然後將第二節的數移下來,我們這裡是補的00,所以就變成100啦。

4、然後計算第2個數,首先先用20去乘以3,也就是第一個得到x,可以得到一個數,可以標記為y,在我們這裡y為60,然後用上一步的餘數去除以這個y,也就是60。簡而言之就是100除以60,得到的整數位就是第二個數的值啦,所以是1。

5、然後用步驟5裡面的60加上1,乘以1,1*(60+1)等於61,然後就用之前得到餘數100減去6,然後再把後面的第二節的數移下來,這裡同樣是00.然後相減,我們可以得到3900這個餘數,然後就依次重複上面步驟5,6,就可以得到無限近似的結果啦。

7樓:郟湛穎嘉子

過最好的是記住根號2,根號3,根號5等一些數值的值

因為很多數值都可以分解成這些數的乘積形式

[解題過程]

述求平方根的方法,稱為筆算開平方法,用這個方法可以求出任何正數的算術平方根,它的計算步驟如下:

1.將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開(豎式中的11'56),分成幾段,表示所求平方根是幾位數;

2.根據左邊第一段裡的數,求得平方根的最高位上的數(豎式中的3);

3.從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段陣列成第一個餘數(豎式中的256);

4.把求得的最高位數乘以20去試除第一個餘數,所得的最大整數作為試商(3×20除

256,所得的最大整數是

4,即試商是4);

5.用商的最高位數的20倍加上這個試商再乘以試商.如果所得的積小於或等於餘數,試商就是平方根的第二位數;如果所得的積大於餘數,就把試商減小再試(豎式中(20×3+4)×4=256,說明試商4就是平方根的第二位數);

6.用同樣的方法,繼續求平方根的其他各位上的數.

徒手開n次方根的方法:

原理:設被開方數為x,開n次方,設前一步的根的結果為a,現在要試根的下一位,設為b,

則有:(10*a+b)^n-(10*a)^n<=c(前一步的差與本段合成);且b取最大值

用純文字描述比較困難,下面用例項說明:

我們求2301781.9823406

的5次方根:

第1步:將被開方的數以小數點為中心,向兩邊每隔n位分段(下面用'表示);不足部分在兩端用0補齊;

23'01781.98234'06000'00000'00000'..........

從高位段向低位段逐段做如下工作:

初值a=0,差c=23(最高段)

第2步:找b,條件:(10*a+b)^n-(10*a)^n<=c,即b^5<=23,且為最大值;顯然b=1

差c=23-b^5=22,與下一段合成,

c=c*10^n+下一段=22*10^5+01781=2201781

第3步:a=1(計算機語言賦值語句寫作a=10*a+b),找下一個b,

條件:(10*a+b)^n-(10*a)^n<=c,即:(10+b)^5-10^5<=2201781,

b取最大值8,差c=412213,與下一段合成,

c=c*10^5+下一段=412213*10^5+98234=41221398234

第4步:a=18,找下一個b,

條件:(10*a+b)^n-(10*a)^n<=c,即:(180+b)^5-180^5<=41221398234,

b取最大值7

說明:這裡可使用近似公式估算b的值:

當10*a>>b時,(10*a+b)^n-(10*a)^n≈n*(10*a)^(n-1)*b,即:

b≈41221398234/n/(10*a)^(n-1)=41221398234/5/180^4≈7.85,取b=7

以下各步都更加可以使用此近似公式估算b之值

差c=1508808527;與下一段合成,

c=c*10^5+下一段=1508808527*10^5+06000=150880852706000

第5步:a=187,找下一個b,

條件:(10*a+b)^n-(10*a)^n<=c,即:

(1870+b)^5-1870^5<=150880852706000,

b取最大值2,差c=28335908584368;與下一段合成,

c=c*10^5+下一段=2833590858436800000

第6步:a=1872,找下一個b,

條件:(10*a+b)^n-(10*a)^n<=c,即:

(18720+b)^5-18720^5<=2833590858436800000,

b取最大值4,差c=376399557145381376;與下一段合成,

c=c*10^5+下一段=37639955714538137600000

8樓:我是龍的傳人

例:求256的平方根

第一步:將被開方數的整數個位起向左每隔兩位劃為一段,用逗號分開,分成幾段,表示所求平方根是幾位數。

例,第一步:將256,分成兩段:

2,56

表示平方根是兩位數(xy,x表是平方根十位上數,y表示個位數)。

第二步:根據左邊第一段裡的數,取該數的平方根的整數部分,作為所要求的平方根求最高位上的數。

例:左邊第一段數值是2,2的平方根是大約等於1.414(這些儘量要記得,100以內的,尤其是能開整數的),由於2的平方根1.

414大於1和小於2,所以取整數部分是1作為所要求的平方根求最高位上的數,即所要求的平方根最高位x是1。

第三步:從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段陣列成第一個餘數。

例:第一段數裡的數是2.第二步計算出最高數是1

2減去1的平方=1

將1與第二段數(56)組成一個第一個餘數:156

第四步:把第二步求得的最高位數(1)乘以20去試除第一個餘數(156),取所得結果的整數部分作為第一個試商。

例: 156除以(1乘20)=7.8

第一個試商就是7

第五步:第二步求得的的最高位數(1)乘以20再加上第一個試商(7)再乘以第一個試商(7)。

(1*20+7)*7

如果:(1*20+7)*7小於等於156,則7就是平方根的第二位數.

如果:(1*20+7)*7大於156,將第一個試商7減1,即用6再計算。

由於:(1*20+6)*6=156所以,6就是第平方根的第二位數。

例:求55225的平方根

第一步:將被開方數的整數個位起向左每隔兩位劃為一段,用逗號分開,分成幾段,表示所求平方根是幾位數。

例,第一步:將55225,分成三段:

5,52,25

表示平方根是三位數(xyz)。

第二步:根據左邊第一段裡的數,取該數的平方根的整數部分,作為所要求的平方根求最高位上的數。

例:左邊第一段數值是5,5的平方根是(2點幾)大於2和小於3,所以取整數部分是2作為所要求的平方根求最高位上的數,即所要求的平方根最高位x是2。

第三步:從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段陣列成第一個餘數。

例:第一段數裡的數是5.第二步計算出最高數是2

5減去2的平方=1

將1與第二段數(52)組成一個第一個餘數:152

第四步:把第二步求得的最高位數(2)乘以20去試除第一個餘數(152),取所得結果的整數部分作為第一個試商。

例: 152除以(2乘20)=3.8

第一個試商就是3

第五步:第二步求得的的最高位數(2)乘以20再加上第一個試商(3)再乘以第一個試商(3)。

(2*20+3)*3

如果:(2*20+3)*3小於等於152,則3就是平方根的第二位數.

如果:(2*20+3)*3大於152,將第一個試商3減1,即用2再計算。

由於:(2*20+3)*3小於152所以,3就是第平方根的第二位數。

第六步:用同樣的方法,繼續求平方根的其他各位上的數。用上一個餘數減去上法中所求的積(即152-129=23),與第三段陣列成新的餘數(即2325)。

這時再求試商,要用前面所得到的平方根的前兩位數(即23)乘以20去試除新的餘數(2325),所得的最大整數為新的試商。(2325/(23×20)的整數部分為5。)

7.對新試商的檢驗如前法。(右例中最後的餘數為0,剛好開盡,則235為所求的平方根。)

數的原碼,反碼,補碼怎麼算一個數的原碼,反碼,補碼怎麼算

數在計算機中是以二進位制形式表示的。數分為有符號數和無符號數。原碼 反碼 補碼都是有符號定點數的表示方法。一個有符號定點數的最高位為符號位,0是正,1是副。以下都以8位整數為例,原碼就是這個數本身的二進位制形式。例如0000001 就是 1 1000001 就是 1 正數的反碼和補碼都是和原碼相同。...

請問數的分數次方怎麼算如5的,請問一個數的分數次方怎麼算如5的23次方

就是5的2次方得出來的數 在開3次根 5 2 3 5 1 3 2 5 1 3 2 5 2 3 表示5的2 3次方 意思是5的2 3次方等於5的2乘以1 3次方,等於5的1 3次方的平方,這你就會了 5的 2 3 次方就是 先5的平方再開三次方 分母是開方的n次方根,分子是m次方 x的m分之n次方就是...

如何求數的倍數,如何求一個數的倍數

先把這些數分解為幾個質數相乘的形式,比如 8 2 2 2。然後把裡面的質數乘起來,比如 求8和6的最小公倍數。8 2 2 2 6 2 3 8和6的最小公倍數為2 2 2 3 具體如下 一個整數能夠被另一整數整除,這個整數就是另一整數的倍數。如15能夠被3或5整除,因此15是3的倍數,也是5的倍數。一...