如何解2元一次方程解析試

2022-06-18 16:55:22 字數 2356 閱讀 8694

1樓:凌月霜丶

一元二次方程和一元一次方程都是整式方程,它是初中數學的一個重點內容,也是今後學習數學的基礎,應引起同學們的重視。

一元二次方程的一般形式為:ax2+bx+c=0, (a≠0),它是隻含一個未知數,並且未知數的最高次數是2的整式方程。

解一元二次方程的基本思想方法是通過「降次」將它化為兩個一元一次方程。一元二次方程有四種解 法:1、直接開平方法;2、配方法;3、公式法;4、因式分解法。

二、方法、例題精講:

1、直接開平方法:

直接開平方法就是用直接開平方求解一元二次方程的方法。用直接開平方法解形如(x-m)2=n (n≥0)的方程,其解為x=m± .

例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11

分析:(1)此方程顯然用直接開平方法好做,(2)方程左邊是完全平方式(3x-4)2,右邊=11>0,所以此方程也可用直接開平方法解。

(1)解:(3x+1)2=7×

∴(3x+1)2=5

∴3x+1=±(注意不要丟解)

∴x=∴原方程的解為x1=,x2=

(2)解: 9x2-24x+16=11

∴(3x-4)2=11

∴3x-4=±

∴x=∴原方程的解為x1=,x2=

2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)

先將常數c移到方程右邊:ax2+bx=-c

將二次項係數化為1:x2+x=-

方程兩邊分別加上一次項係數的一半的平方:x2+x+( )2=- +( )2

方程左邊成為一個完全平方式:(x+ )2=

當b2-4ac≥0時,x+ =±

∴x=(這就是求根公式)

例2.用配方法解方程 3x2-4x-2=0

解:將常數項移到方程右邊 3x2-4x=2

將二次項係數化為1:x2-x=

方程兩邊都加上一次項係數一半的平方:x2-x+( )2= +( )2

配方:(x-)2= 直接開平方得:x-=±

∴x=∴原方程的解為x1=,x2= .

3.公式法:把一元二次方程化成一般形式,然後計算判別式△=b2-4ac的值,當b2-4ac≥0時,把各項係數a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

例3.用公式法解方程 2x2-8x=-5

解:將方程化為一般形式:2x2-8x+5=0

∴a=2, b=-8, c=5

b2-4ac=(-8)2-4×2×5=64-40=24>0

∴x= = =

∴原方程的解為x1=,x2= .

4.因式分解法:把方程變形為一邊是零,把另一邊的二次三項式分解成兩個一次因式的積的形式,讓

兩個一次因式分別等於零,得到兩個一元一次方程,解這兩個一元一次方程所得到的根,就是原方程的兩個

根。這種解一元二次方程的方法叫做因式分解法。

例4.用因式分解法解下列方程:

(1) (x+3)(x-6)=-8 (2) 2x2+3x=0

(3) 6x2+5x-50=0 (選學) (4)x2-2( + )x+4=0 (選學)

(1)解:(x+3)(x-6)=-8 化簡整理得

x2-3x-10=0 (方程左邊為二次三項式,右邊為零)

(x-5)(x+2)=0 (方程左邊分解因式)

∴x-5=0或x+2=0 (轉化成兩個一元一次方程)

∴x1=5,x2=-2是原方程的解。

(2)解:2x2+3x=0

x(2x+3)=0 (用提公因式法將方程左邊分解因式)

∴x=0或2x+3=0 (轉化成兩個一元一次方程)

∴x1=0,x2=-是原方程的解。

注意:有些同學做這種題目時容易丟掉x=0這個解,應記住一元二次方程有兩個解。

(3)解:6x2+5x-50=0

(2x-5)(3x+10)=0 (十字相乘分解因式時要特別注意符號不要出錯)

∴2x-5=0或3x+10=0

∴x1=, x2=- 是原方程的解。

(4)解:x2-2(+ )x+4 =0 (∵4 可分解為2 ??2 ,∴此題可用因式分解法)

(x-2)(x-2 )=0

∴x1=2 ,x2=2是原方程的解。

小結:一般解一元二次方程,最常用的方法還是因式分解法,在應用因式分解法時,一般要先將方程寫成一般 形式,同時應使二次項係數化為正數。

直接開平方法是最基本的方法。

公式法和配方法是最重要的方法。公式法適用於任何一元二次方程(有人稱之為萬能法),在使用公式 法時,一定要把原方程化成一般形式,以便確定係數,而且在用公式前應先計算判別式的值,以便判斷方程 是否有解。

2樓:斷鷹攀崖

1、利用因式分解法x+5x+6=(x+2)(x+3)=0

2、求根公式法:

如何解一元一次方程

解一元一次方程組主要幾個步驟 1 去 分母,去括號。2 移項,合併同類項。3 係數化為一,得到方程的解。解應用題 1 設未知 數為x 2 根據等量關係列方程 3 解方程 一元一次方程內容比較簡單,尤其是應用題大致這樣幾個型別 1 行程 路程 速度 時間 2 工作量 3 利潤利率 1 去 分母,去括號...

如何解三元一次方程怎樣解三元一次方程組?

三元一次方程組的解法仍是用代入法或加減法消元,即通過消元將三元一次方程組轉化為二元一次方程組,再轉化為一元一次方程 如何消元,首先要認真觀察方程組中各方程係數的特點,然後選擇最好的解法 有些特殊方程組,可用特殊的消元方法,有時一下子可消去兩個未知數,直接求出一個未知數值來 先確定消去 那麼這三個方程...

用二元一次方程解答

設這個年紀的寄宿生人數x,宿舍間數y 於是,得5y 4 x 6 y 2 6 4 x 解此方程組,得x 94,y 18 則這個年紀的寄宿生人數為94人,宿舍間數18間。5x 4 y 6x 4 4 6 y x 24 y 124 設宿舍有x間,人數有y人 那麼 5x 4 y 6 x 3 4 y 6x 14...