急!已知a,b,c屬於R,a b c 1,a 2 b 2 c 2 3,求ab ac bc的值,設abc,指出c的符號,並說明理由,證明a

2023-02-07 10:15:04 字數 3695 閱讀 5916

1樓:己你我營

a+b+c=1

(a+b+c)^2=1^2

a^2+b^2+c^2+2ab+2ac+2bc=1所以ab+ac+bc=(1-3)/2=-1a>b>c

如果c≥0那麼

a>b>c≥0

有ab>0,ac≥0,bc≥0

ab+ac+bc>0,與前面的結果不符

所以假設不成立所c<0,符號為負

a>b有2a>a+b=1-c

c<0所以1-c>1

也就是2a>a+b=1-c>1

2a>1

所以a>1/2

2樓:匿名使用者

a+b+c=1,(a+b+c)^2=1,a^2+b^2+c^2+2ab+2bc+2ca=1,3+2(ab+ac+bc)=1.

ab+ac+bc=-1

由於ab+ac+bc=-1,所以a,b,c必不同號,否則ab+ac+bc必為正數,又由於a>b>c,所以c必為負數,符號為負

由a+b+c=1,已知c<0,若b<0,那麼a=1-b-c>1;若b>0,那麼a+b=1-c>1,由因為a>b,所以2a>a+b>1,a>1/2,綜合得到a>1/2

已知a,b,c是正數,a+b+c=1,證明(a+1/a)^2+(b+1/b)^2+(c+1/c)

3樓:匿名使用者

(a+b+c)(1/a+1/b+1/c)≥[√a*1/(√a)+√b*1/(√b)+√c*1/(√c)]^2=(1+1+1)^2,

則1/a+1/b+1/c≥9,

[(a+1/a)^2+(b+1/b)^2+(c+1/c)^2](1+1+1)

≥(a+1/a+b+1/b+c+1/c)^2≥(1+9)^2,3除過去,(a+1/a)^2+(b+1/b)^2+(c+1/c)^2≥100/3,得證。

已知a,b,c屬於實數,且a+b+c=1,求證a^2+b^2+c^2>3

4樓:她是朋友嗎

題目du有誤

已知abc是實數,zhia+b+c=1,求證:a^dao2+b^2+c^2>=1/3

(回1)(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc =1 又因為(2)a^2+b^2>=2ab(3) a^2+c^2>=2ac(4)b^2+c^2>=2bc 把五個答式子的左邊加起來3a^2+3b^2+3c^2+2ab+2ac+2bc 大於等於五個式子右邊加起來1+2ab+2ac+2bc就是3a^2+3b^2+3c^2+2ab+2ac+2bc >=1+2ab+2ac+2bc所以a^2+b^2+c^2>=1/3

5樓:山師建彬

顯然不可能

比方abc都等於1/3

那麼a^2+b^2+c^2就等於1/3

你是不是抄錯了啊?

仔細點,再想想,祝你學習進步~~

已知a,b,c均為正實數,a+b+c=1,求證:a^2+b^2+c^2>=1/3

6樓:公子翀

^^因為

(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac且2ab<=a^專2+b^2

2ac<=a^2+c^2

2bc<=b^2+c^2

所以:屬a^2+b^2+c^2+2ab+2bc+2ac<=3(a^2+b^2+c^2)

所以:3(a^2+b^2+c^2)>=1

所以:a^2+b^2+c^2>=1/3

7樓:匿名使用者

^^a,b,c均為正zhi實數,

a+b+c=1

(a+b+c)^dao2=1

a^2+b^2+c^2=1-2ab-2bc-2ca又:a^2+b^2≥

內2ab,b^2+c^2≥2bc,c^2+a^2≥2ca∴容a^2+b^2+c^2≥ab+bc+ca∴1-2ab-2bc-2ca≥ab+bc+ca∴ab+bc+ca≤1/3

8樓:匿名使用者

^^^柯西不等複式:(

∑(制ai^2;))(∑(bi^2;)) ≥ (∑ai·bi)^2(a^2+b^2+c^2)(1^2+1^2+1^2)≥ (1a+1b+1c)^2

3(a^2+b^2+c^2)≥1得a^2+b^2+c^2≥1/3當且僅當(a/1)=(b/1)=(b/1),即a=b=c1/3

已知a,b,c≥0,且a+b+c=1,求證1/a^2+a+1+1/b^2+b+1+1/c^2+c+1≥7/3

9樓:新野旁觀者

已知a、b、c是非零實數,且a^2+b^2+c^2=1,a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)=-3,求a+b+c的值

a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)=-3

a(1/b+1/c)+1+b(1/c+1/a)+1+c(1/a+1/b)+1=-3+3

a(1/a+1/b+1/c)+b(1/a+1/b+1/c)+c(1/a+1/b+1/c)=0

(a+b+c)*(1/a+1/b+1/c)=0

a+b+c=0

或1/a+1/b+1/c=0

(bc+ac+ab)/(abc)=0

ab+ac+bc=0

a^2+b^2+c^2=1

a^2+b^2+c^2+2ab+2ac+2bc=1+0

(a+b+c)^2=1

a+b+c=1或-1

綜上所述a+b+c=0或1或-1

已知a=2015,b=2016,c=2017,求a^2+b^2+c^2-ab-ac-bc的值

10樓:匿名使用者

^^你好a^2+b^2+c^2-ab-ac-bc=1/2×(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2)

=1/2×[(a-b)²+(b-c)²+(a-c)²]=1/2×(1+1+4)=3

11樓:玥

^^(a-b)^zhi2=1=a^dao2+b^專2-2ab 1式

(a-c)^屬2 =4= a^2+c^2-2ac 2式(b-c)^2=1= b^2+c^2-2bc 3式觀察:1式+2式+3式 = 6 = 2a^2+2b^2+2c^2-2ab-2ac-2bc

所以:(1+2+3)/2 = a^2+b^2+c^2-ab-ac-bc= 3

12樓:匿名使用者

a^2+b^2+c^2-ab-ac-bc

=2*(

a^2+b^2+c^2-ab-ac-bc)/2=[(內a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)]/2

=[(a-b)^容2+(b-c)^2+(a-c)^2]/2=[(2016-2015)^2+(2017-2016)^2+(2017-2015)^2]/2

=(1+1+4)/2=3

已知a=2015,b=2016,c=2017,求a^2+b^2+c^2-ab-ac-bc的值

13樓:匿名使用者

a²+b²+c²-ab-ac-bc

=(a²-ac)+(b²-ab)+(c²-bc)=a(a-c)+b(b-a)+c(c-b)=2015x(2015-2017)+2016x(2016-2015)+2017x(2017-2016)

=2017+2016-2015*2=3

已知a b c 1,a的平方 b的平方 c的平方2求ab bc ac

把它a b c 1兩邊平方 得 a的平方 b的平方 c的平方 2 ab bc ac 1又a的平方 b的平方 c的平方 2 所以 ab bc ac 0.5 ab bc ac 1 2 a b c 2 a的平方 b的平方 c的平方 1 2 1 2 1 2 等於x麼,1 a b c a b c ab ac ...

已知a1a2b3,求a2b22ab的值

去括bai號 a 1 a2 b 3 移項 合du 並同zhi類項 a2 a b 2 0 配方dao a2 a 1 1 b 2 0 a 1 回2 b 3 0 所以答a 1 0,b 3 0 a 1,b 3 a2 b2 2ab a b 2 1 3 2 16 已知 a b 2 7,a b 2 3.1 求a2...

c語言設inta3,b2,c1,表示式abc的值是多少

0 因為關係運算子是左結合的,a b c等價於 a b c,由於a b成立得1,而1 c不成立得0。設int a 3,b 2,c 1 表示式a b c的值是 0,false 因為 3 2為真,即為1,而 1 1為假,即false c語言中int a 3,b 2,c 1執行if a b c a b e...