數獨和數學有什麼相應的思想方法,小學數學裡有哪些基本的數學思想方法

2021-03-04 04:55:19 字數 4080 閱讀 6551

1樓:匿名使用者

沒有,數學是算數,在數字和幾何方面計算,證明,而數獨只是用數字的符號來代替訓練你的邏輯思維而已

小學數學裡有哪些基本的數學思想方法

2樓:海風教育

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

一、重視課內聽講,課後及時進行復習.

新知識的接受和數學能力的培養主要是在課堂上進行的,所以我們必須特別注意課堂學習的效率,尋找正確的學習方法.在課堂上,我們必須遵循教師的思想,積極制定以下步驟,思考和**解決問題的思想與教師之間的差異.特別是,我們必須瞭解基本知識和基本學習技能,並及時審查它們以避免疑慮.

首先,在進行各種練習之前,我們必須記住教師的知識點,正確理解各種公式的推理過程,並試著記住而不是採用"不確定的書籍閱讀".勤于思考,對於一些問題試著用大腦去思考,認真分析問題,嘗試自己解決問題.

二、多做習題,養成解決問題的好習慣.

如果你想學好數學,你需要提出更多問題,熟悉各種問題的解決問題的想法.首先,我們先從課本的題目為標準,反覆練習基本知識,然後找一些課外活動,幫助開拓思路練習,提高自己的分析和掌握解決的規律.對於一些易於查詢的問題,您可以準備一個用於收集的錯題本,編寫自己的想法來解決問題,在日常養成解決問題的好習慣.

學會讓自己高度集中精力,使大腦興奮,快速思考,進入最佳狀態並在考試中自由使用.

三、調整心態並正確對待考試.

首先,主要的重點應放在基礎、基本技能、基本方法,因為大多數測試出於基本問題,較難的題目也是出自於基本.所以只有調整學習的心態,儘量讓自己用一個清楚的頭腦去解決問題,就沒有太難的題目.考試前要多對習題進行演練,開闊思路,在保證真確的前提下提高做題的速度.

對於簡單的基礎題目要拿出二十分的把握去做;難得題目要儘量去做對,使自己的水平能正常或者超常發揮.

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

3樓:匿名使用者

1、對應思想方法

對應是人們對兩個集合因素之間的聯絡的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函式思想。如直線上的點(數軸)與表示具體的數是一一對應。

2、假設思想方法

假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想象思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。

3、比較思想方法

比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。

4、符號化思想方法

用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關係,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的資訊。如定律、公式、等。

5、類比思想方法

類比思想是指依據兩類數學物件的相似性,有可能將已知的一類數學物件的性質遷移到另一類數學物件上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟的自然和簡潔。

6、轉化思想方法

轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。

7、分類思想方法

分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學物件的分類及其分類的標準。如自然數的分類,若按能否被2整除分奇數和偶數;按約數的個數分質數和合數。又如三角形可以按邊分,也可以按角分。

不同的分類標準就會有不同的分類結果,從而產生新的概念。對數學物件的正確、合理分類取決於分類標準的正確、合理性,數學知識的分類有助於學生對知識的梳理和建構。

8、集合思想方法

集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數學問題或非純數學問題的思想方法。小學採用直觀手段,利用圖形和實物滲透集合思想。在講述公約數和公倍數時採用了交集的思想方法。

9、數形結合思想方法

數和形是數學研究的兩個主要物件,數離不開形,形離不開數,一方面抽象的數學概念,複雜的數量關係,藉助圖形使之直觀化、形象化、簡單化。另一方面複雜的形體可以用簡單的數量關係表示。在解應用題中常常藉助線段圖的直觀幫助分析數量關係。

10、統計思想方法:

小學數學中的統計圖表是一些基本的統計方法,求平均數應用題是體現出資料處理的思想方法。

11、極限思想方法:

事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變。在講「圓的面積和周長」時,「化圓為方」「化曲為直」的極限分割思路,在觀察有限分割的基礎上想象它們的極限狀態,這樣不僅使學生掌握公式還能從曲與直的矛盾轉化中萌發了無限逼近的極限思想。

12、代換思想方法:

他是方程解法的重要原理,解題時可將某個條件用別的條件進行代換。如學校買了4張桌子和9把椅子,共用去504元,一張桌子和3把椅子的價錢正好相等,桌子和椅子的單價各是多少?

13、可逆思想方法:

它是邏輯思維中的基本思想,當順向思維難於解答時,可以從條件或問題思維尋求解題思路的方法,有時可以借線段圖逆推。如一輛汽車從甲地開往乙地,第一小時行了全程的1/7,第二小時比第一小時多行了16千米,還有94千米,求甲乙之距。

14、化歸思維方法:

把有可能解決的或未解決的問題,通過轉化過程,歸結為一類以便解決可較易解決的問題,以求得解決,這就是「化歸」。而數學知識聯絡緊密,新知識往往是舊知識的引申和擴充套件。讓學生面對新知會用化歸思想方法去思考問題,對獨立獲得新知能力的提高無疑是有很大幫助。

化歸的方向應該是化隱為顯、化繁為簡、化難為易、化未知為已知。

15、變中抓不變的思想方法:

在紛繁複雜的變化中如何把握數量關係,抓不變的量為突破口,往往問了就迎刃而解。如:科技書和文藝書共630本,其中科技書20%,後來又買來一些科技書,這時科技書佔30%,又買來科技書多少本?

16、數學模型思想方法:

所謂數學模型思想是指對於現實世界的某一特定物件,從它特定的生活原型出發,充分運用觀察、實驗、操作、比較、分析綜合概括等所謂過程,得到簡化和假設,它是把生活中實際問題轉化為數學問題模型的一種思想方法。培養學生用數學的眼光認識和處理周圍事物或數學問題乃數學的最高境界,也是學生高數學素養所追求的目標。

17、整體思想方法:

對數學問題的觀察和分析從巨集觀和大處著手,整體把握化零為整,往往不失為一種更便捷更省時的方法。

有關數學的遊戲,在現實生活中玩的,比如:數獨 100

4樓:baby等待相見

24點,多骨諾牌,數獨等等,這幾個是比較考驗腦子的求採納

5樓:匿名使用者

逢7過的遊戲,比如數字中含7和7的倍數就喊過,不含7和7的倍數就說數字

6樓:毊薭糖

你可以買一個木質的樹數獨

7樓:匿名使用者

21點,有專門的卡牌

數學和數獨有什麼關係好急啊,現在就要,1

8樓:匿名使用者

標準數獨的話可以說幾乎沒有關係。

一些計算類變形數獨與小學算術粘點邊,估計就是沒學過數學看看規則也能做。

有什麼數學小遊戲 除數獨 急

9樓:箬竺

24點棋牌類益智遊戲,要求結果等於二十四,一起來玩玩吧!這個遊戲用撲克牌更容易來開展。拿一副牌,抽去大小王后(初練也可以把j/q/k也拿去),剩下1~10這40張牌(以下用1代替a)。

任意抽取4張牌(稱為牌組),用加、減、乘、除(可加括號)把牌面上的數算成24。每張牌必須且只能用一次。如抽出的牌是3、8、8、9,那麼算式為(9-8)×8×3=24。

10樓:禾鷗聊蘊美

別把簡單東西複雜化,沒技巧的東西。。。

高考中的數學思想方法

數學中的思想主要來自幾個重要概念 函式與方程 數形結合 不等式 變數代換 抽象推理等等 你如果想學好數學 必須要有一本好書在手 因為好書易得 好老師難找 所以推薦你買一本兩本質量上乘的數學輔導書 至於做題這塊 還是三年高考五年模擬這種書比較好些 有了好的思想還要會靈活運用 歷年考題還是要多做做的 做...

數學常用的數學思想方法有哪些小學數學裡有哪些基本的數學思想方法

數學常用的數學思想方法主要有 用字母表示數的思想,數形結合的思想,轉化思想 化歸思想 分類思想,類比思想,函式的思想,方程的思想,無逼近思想等等。1.用字母表示數的思想 這是基本的數學思想之一 在代數第一冊第二章 代數初步知識 中,主要體現了這種思想。2.數形結合 是數學中最重要的,也是最基本的思想...

數學思想方法的教學以什麼為主要特徵

一 對數學思想方法的認識 數學思想方法 一詞,在數學教育 數學教學領域已被廣泛使用。對於什麼是數學思想方法,數學家和數學教育工作者有諸多論述。概括起來,大家通常是從 數學思想 和 數學方法 兩個角度進行闡述的。數學思想是對數學物件的本質認識,是從某些具體的數學內容 如概念 命題 規律 和數學認識過程...