傅立葉級數是什麼,傅立葉級數有什麼用啊?

2021-03-03 21:35:35 字數 6529 閱讀 4474

1樓:匿名使用者

說白了就是按定義來,求積分

不明白可追問

2樓:安靜_小

法國數學家傅立葉發現,任何周期函式都可以用正弦函式和餘弦函式構成的無窮級數來表示(選擇正弦函式與餘弦函式作為基函式是因為它們是正交的),後世稱為傅立葉級數(法文:sériede fourier,或譯為傅立葉級數)一種特殊的三角級數。一種特殊的三角級數。

法國數學家j.-b.-j.

傅立葉在研究偏微分方程的邊值問題時提出。從而極大地推動了偏微分方程理論的發展。在中國,程民德最早系統研究多元三角級數與多元傅立葉級數。

他首先證明

多元三角級數球形和的唯一性定理,並揭示了多元傅立葉級數的里斯- 博赫納球形平均的許多特性。傅立葉級數曾極大地推動了偏微分方程理論的發展。在數學物理以及工程中都具有重要的應用。

3樓:匿名使用者

傅立葉級數是大學數學裡面的內容。

傅立葉級數是什麼?

4樓:手機使用者

一. 傅立葉級數的三角函式形式

設f(t)為一非正弦周期函式,其週期為t,頻率和角頻率分別為f , ω1。由於工程實際中的非正弦周期函式,一般都滿足狄裡赫利條件,所以可將它成傅立葉級數。即

其中a0/2稱為直流分量或恆定分量;其餘所有的項是具有不同振幅,不同初相角而頻率成整數倍關係的一些正弦量。a1cos(ω1t+ψ1)項稱為一次諧波或基波,a1,ψ1分別為其振幅和初相角;a2cos(ω2t+ψ2)項的角頻率為基波角頻率ω1的2倍,稱為二次諧波,a2,ψ2分別為其振幅和初相角;其餘的項分別稱為三次諧波,四次諧波等。基波,三次諧波,五次諧波……統稱為奇次諧波;二次諧波,四次諧波……統稱為偶次諧波;除恆定分量和基波外,其餘各項統稱為高次諧波。

式(10-2-1)說明一個非正弦周期函式可以表示一個直流分量與一系列不同頻率的正弦量的疊加。

上式有可改寫為如下形式,即

當a0,an, ψn求得後,代入式 (10-2-1),即求得了非正弦周期函式f(t)的傅立葉級數式。

把非正弦周期函式f(t)成傅立葉級數也稱為諧波分析。工程實際中所遇到的非正弦周期函式大約有十餘種,它們的傅立葉級數式前人都已作出,可從各種數學書籍中直接查用。

從式(10-2-3)中看出,將n換成(-n)後即可證明有

a-n=an

b-n=-bn

a-n=an

ψ-n=-ψn

即an和an是離散變數n的偶函式,bn和ψn是n的奇函式。

二. 傅立葉級數的復指數形式

將式(10-2-2)改寫為

可見 與 互為共軛複數。代入式(10-2-4)有

上式即為傅立葉級數的復指數形式。

下面對和上式的物理意義予以說明:

由式(10-2-5)得的模和輻角分別為

可見的模與幅角即分別為傅立葉級數第n次諧波的振幅an與初相角ψn,物理意義十分明確,故稱為第n次諧波的複數振幅。

的求法如下:將式(10-2-3a,b)代入式(10-2-5)有

上式即為從已知的f(t)求的公式。這樣我們即得到了一對相互的變換式(10-2-8)與(10-2-7),通常用下列符號表示,即

即根據式(10-2-8)由已知的f(t)求得,再將所求得的代入式(10-2-7),即將f(t)成了復指數形式的傅立葉級數。

在(10-2-7)中,由於離散變數n是從(-∞)取值,從而出現了負頻率(-nω1)。但實際工程中負頻率是無意義的,負頻率的出現只具有數學意義,負頻率(-nω1)一定是與正頻率nω1成對存在的,它們的和構成了一個頻率為nω1的正弦分量。即

引入傅立葉級數復指數形式的好處有二:(1)複數振幅同時描述了第n次諧波的振幅an和初相角ψn;(2)為研究訊號的頻譜提供了途徑和方便。

高等數學中的傅立葉級數

傅立葉係數

傅立葉係數包括係數 ,積分號和它的積分域,以及裡面的兩個周期函式的乘積——其中一個是關於f的,另一個是關於x的函式f(x),另一個則是和級數項n有關的三角函式值。這個三角函式可以是正弦,也可以是餘弦,因此傅立葉係數包括正弦係數和餘弦係數。其中當n=0時,餘弦值為1,此時存在一個特殊的係數 ,它只與x有關。

正弦係數再成一個正弦,餘弦再乘一個餘弦,相加並且隨n求和,再加上一半的 ,就稱為了這個特別的函式f(x)的傅立葉級數。為什麼它特別呢,我想因為這裡只有它只限於一個周期函式而已,而級數的週期就是f(x)的週期,2 。

如果函式f(x)存在一個週期,但是不是2 了,而是關於y軸對稱的任意一個範圍,它還能寫成傅立葉級數麼?也可以的。只要把傅立葉係數裡的 換成l,並且把積分號裡的三角函式中的n 下除一個l,同時把係數以外的那個n 底下也除一個l。

其他的都不動。也可以認為,2 週期的傅立葉級數其實三角函式中x前面的係數應該是 ,其他的 (積分域和係數)應該是x,只不過這時所有的l都是 罷了。

前面提及了,週期或是積分域,是關於y軸的一個任意範圍。其實周期函式不用強調這個,但是為什麼還要說呢?因為要特別強調一下定義域是滿的。

有些函式的定義域不是滿的,是0到l,當然這樣它有可能不是週期的。這些函式能寫成傅立葉級數麼?同樣可以。

而且,它的寫法不再是正弦和餘弦函式的累積,而是單獨的一個正弦函式或是餘弦函式。具體怎麼寫,就取決於怎麼做。因為域是一半的,所以自然而然想到把那一半補齊,f就成了周期函式。

補齊既可以補成奇函式也可以補成偶函式。補成積函式,寫成的級數只有正弦項,即 為0。補成偶函式,寫成的級數就只含有餘弦項和第一項,即 為0。

而,傅立葉係數相比非積非偶的函式要大一倍。

其實,如果不經延拓,上面那些對於奇偶函式同樣使用。

在做題時,常常看到級數後面跟著一個係數還有一個正弦函式,然後後面給出了這個係數很複雜的一串式子,這時候就容易突然短路了。但是如果再定睛一看,會發現其實那個係數不過是一個有積分的傅立葉係數而已。那麼一大串,應該看什麼呢?

應當先看積分域,一下就可以定出週期了。第二步要明確級數和函式的關係即等價關係。函式不但包含在級數中,而且函式本身也是和級數等價的。

但一般那個級數裡的函式是一個擺設,不起什麼作用

傅立葉級數有什麼用啊?

5樓:您輸入了違法字

傅立葉級數曾極大地推動了偏微分方程理論的發展。在數學物理以及工程中都具有重要的應用。

法國數學家j.-b.-j.傅立葉在研究偏微分方程的邊值問題時提出。從而極大地推動了偏微分方程理論的發展。

在中國,程民德最早系統研究多元三角級數與多元傅立葉級數。

他首先證明多元三角級數球形和的唯一性定理,並揭示了多元傅立葉級數的里斯- 博赫納球形平均的許多特性。

6樓:匿名使用者

那是非常有用。

從技術上講,傅立葉級數以及發展出來的傅立葉變換,傅立葉分析,可以把一個時間域上的訊號轉化到頻率域上(當然,也可以轉回來),這在工科中的應用非常之多。

一個我想到的最簡單的例子:一個連續的訊號,我想轉成離散的訊號傳輸,那麼我可以使用傅立葉變換把它寫成傅立葉級數的形式(這是一個無窮的級數和),然後我通過濾波捨棄掉過於高頻的部分(這部分可以理解為噪音),剩下來的就是一個有限和,那麼這個複雜的連續訊號就可以用有限個傅立葉係數(和相應的基)表示出來,傳輸時也只用傳輸這有限個離散量了。傳輸到後,只要通過傅立葉逆變換就又變成原來的訊號(去掉高頻部分)了。

從哲學上講,傅立葉變換為我們提供了一種新的觀察、分析事物的角度,而且在很多時候,這一角度比變換前更接近事物的本質。傅立葉變換可以抽象出一個分析模式:對處於某個域(如:

周期函式域)上的物件的研究,我們可以先建立這個域上的一組基(如:傅立葉基),這個域上的物件都可以用這組基(唯一地)表示出來(如:傅立葉變換),而且這組基本身有一些很好的性質(正交性,可解釋性等等),那麼對這種物件的研究,就可以轉化為對物件在這組基上的投影的研究。

通常可以得到一些很好的性質,這些性質可以通過某種方法(如:傅立葉逆變換)應用到原物件上。傅立葉變換是這種思維方法最簡單也是最廣泛的應用之一。

以後還有很多相似的分析方法,如一般正交基,bernstain基等等。還有抽象數學中很多原空間中難以解決的問題就到其對偶空間上解決,也是類似的思想。

傅立葉級數是什麼,有什麼用

7樓:匿名使用者

任何的周期函式(比方說方波訊號或者是鋸齒波訊號)都可以用正弦或者是餘弦的無窮級數來表示(即無窮個正弦或者餘弦函式的疊加)。用途很多:數學領域及電子學中的訊號分析

傅立葉級數的詳細介紹?

8樓:匿名使用者

一. 傅立葉級數的三角函式形式

設f(t)為一非正弦周期函式,其週期為t,頻率和角頻率分別為f , ω1。由於工程實際中的非正弦周期函式,一般都滿足狄裡赫利條件,所以可將它成傅立葉級數。即

其中a0/2稱為直流分量或恆定分量;其餘所有的項是具有不同振幅,不同初相角而頻率成整數倍關係的一些正弦量。a1cos(ω1t+ψ1)項稱為一次諧波或基波,a1,ψ1分別為其振幅和初相角;a2cos(ω2t+ψ2)項的角頻率為基波角頻率ω1的2倍,稱為二次諧波,a2,ψ2分別為其振幅和初相角;其餘的項分別稱為三次諧波,四次諧波等。基波,三次諧波,五次諧波……統稱為奇次諧波;二次諧波,四次諧波……統稱為偶次諧波;除恆定分量和基波外,其餘各項統稱為高次諧波。

式(10-2-1)說明一個非正弦周期函式可以表示一個直流分量與一系列不同頻率的正弦量的疊加。

上式有可改寫為如下形式,即

當a0,an, ψn求得後,代入式 (10-2-1),即求得了非正弦周期函式f(t)的傅立葉級數式。

把非正弦周期函式f(t)成傅立葉級數也稱為諧波分析。工程實際中所遇到的非正弦周期函式大約有十餘種,它們的傅立葉級數式前人都已作出,可從各種數學書籍中直接查用。

從式(10-2-3)中看出,將n換成(-n)後即可證明有

a-n=an

b-n=-bn

a-n=an

ψ-n=-ψn

即an和an是離散變數n的偶函式,bn和ψn是n的奇函式。

二. 傅立葉級數的復指數形式

將式(10-2-2)改寫為

可見 與 互為共軛複數。代入式(10-2-4)有

上式即為傅立葉級數的復指數形式。

下面對和上式的物理意義予以說明:

由式(10-2-5)得的模和輻角分別為

可見的模與幅角即分別為傅立葉級數第n次諧波的振幅an與初相角ψn,物理意義十分明確,故稱為第n次諧波的複數振幅。

的求法如下:將式(10-2-3a,b)代入式(10-2-5)有

上式即為從已知的f(t)求的公式。這樣我們即得到了一對相互的變換式(10-2-8)與(10-2-7),通常用下列符號表示,即

即根據式(10-2-8)由已知的f(t)求得,再將所求得的代入式(10-2-7),即將f(t)成了復指數形式的傅立葉級數。

在(10-2-7)中,由於離散變數n是從(-∞)取值,從而出現了負頻率(-nω1)。但實際工程中負頻率是無意義的,負頻率的出現只具有數學意義,負頻率(-nω1)一定是與正頻率nω1成對存在的,它們的和構成了一個頻率為nω1的正弦分量。即

引入傅立葉級數復指數形式的好處有二:(1)複數振幅同時描述了第n次諧波的振幅an和初相角ψn;(2)為研究訊號的頻譜提供了途徑和方便。

高等數學中的傅立葉級數

傅立葉係數

傅立葉係數包括係數 ,積分號和它的積分域,以及裡面的兩個周期函式的乘積——其中一個是關於f的,另一個是關於x的函式f(x),另一個則是和級數項n有關的三角函式值。這個三角函式可以是正弦,也可以是餘弦,因此傅立葉係數包括正弦係數和餘弦係數。其中當n=0時,餘弦值為1,此時存在一個特殊的係數 ,它只與x有關。

正弦係數再成一個正弦,餘弦再乘一個餘弦,相加並且隨n求和,再加上一半的 ,就稱為了這個特別的函式f(x)的傅立葉級數。為什麼它特別呢,我想因為這裡只有它只限於一個周期函式而已,而級數的週期就是f(x)的週期,2 。

如果函式f(x)存在一個週期,但是不是2 了,而是關於y軸對稱的任意一個範圍,它還能寫成傅立葉級數麼?也可以的。只要把傅立葉係數裡的 換成l,並且把積分號裡的三角函式中的n 下除一個l,同時把係數以外的那個n 底下也除一個l。

其他的都不動。也可以認為,2 週期的傅立葉級數其實三角函式中x前面的係數應該是 ,其他的 (積分域和係數)應該是x,只不過這時所有的l都是 罷了。

前面提及了,週期或是積分域,是關於y軸的一個任意範圍。其實周期函式不用強調這個,但是為什麼還要說呢?因為要特別強調一下定義域是滿的。

有些函式的定義域不是滿的,是0到l,當然這樣它有可能不是週期的。這些函式能寫成傅立葉級數麼?同樣可以。

而且,它的寫法不再是正弦和餘弦函式的累積,而是單獨的一個正弦函式或是餘弦函式。具體怎麼寫,就取決於怎麼做。因為域是一半的,所以自然而然想到把那一半補齊,f就成了周期函式。

補齊既可以補成奇函式也可以補成偶函式。補成積函式,寫成的級數只有正弦項,即 為0。補成偶函式,寫成的級數就只含有餘弦項和第一項,即 為0。

而,傅立葉係數相比非積非偶的函式要大一倍。

其實,如果不經延拓,上面那些對於奇偶函式同樣使用。

在做題時,常常看到級數後面跟著一個係數還有一個正弦函式,然後後面給出了這個係數很複雜的一串式子,這時候就容易突然短路了。但是如果再定睛一看,會發現其實那個係數不過是一個有積分的傅立葉係數而已。那麼一大串,應該看什麼呢?

應當先看積分域,一下就可以定出週期了。第二步要明確級數和函式的關係即等價關係。函式不但包含在級數中,而且函式本身也是和級數等價的。

但一般那個級數裡的函式是一個擺設,不起什麼作用

x 2 x傅立葉級數,x 2, x 3, x 4的傅立葉級數

設f x 是x x經過t 2 週期延拓後的周期函式這裡就要十分注意到傅立葉級數的收斂條件了 因為f x 是不連續的.這一點請見下圖設所求出的傅立葉級數的和函式是s x a0 2 ancosn x bnsinn x 那麼s x0 f x0 當x0是f x 的連續點時s x0 f x0 f x0 2 當...

這個怎麼沒a0傅立葉級數,高等數學,傅立葉級數,式多加了a02,fx不用減去嗎?

a0計算公式已經統一到an的計算公式裡了。所以一般不一定需要另外計算,除非計算過程中n出現在分母上時,a0才需要另外計算。奇函式傅立葉級數一定是正弦級數,a0,an都是0,可以不用計算。因為這道題a0算出來等於0 高等數學,傅立葉級數,式多加了a0 2,f x 不用減去嗎?a0不是0,題中的a0 平...

sgnx怎麼成傅立葉級數,怎麼利用

奇函式因此傅立葉係數an 0 bn 1 f x sin nx dx 4 n n為奇數 bn 1 f x sin nx dx 0 n為偶數 f x 4 2n 1 sin2n 1x 有哪些關於學習的名言?人生在勤,不索何獲 張衡 業精於勤而荒於嬉,行成於思而毀於隨 韓愈 不學自知,不問自曉,古今行事,未...