求下列矩陣的行階梯型,行最簡式和標準式

2021-03-03 21:39:55 字數 4105 閱讀 5714

1樓:小樂笑了

紅色是行階梯型,藍色是行最簡形,粉色是標準型

線性代數:求矩陣的秩,是把矩陣化為行階梯形還是化為行最簡形?求解釋

2樓:匿名使用者

一般來說,題目只是需要求矩陣的秩的話,只化成行階梯型就行了。

但是如果是還要求線性方程組的解的話,化成最簡形。

3樓:位

都可以,一般化成行階梯形即可。

線性代數,什麼是行階梯形,行最簡形,等價標準型矩陣,隨便花個,讓我看看什麼樣子,

4樓:小樂笑了

行階梯形,就是一種階梯形,類似於上三角矩陣行最簡型,就是特殊的行階梯形,並且各行第1個非0元素必須是1,且1所在的其他列,都為0

例如:得到行階梯形

然後使用初等列變換,把上面矩陣化成

1    0    0

0    1    0

0    0    0

0    0    0

這時就得到,等價標準型矩陣

什麼叫行階梯形矩陣?什麼叫行最簡形矩陣?

5樓:匿名使用者

行階梯形:

(1)零行(元全為零的行)位於全部非零行的下方(若有);

(2) 非零行的首非零元的列下標隨其行下標的遞增而嚴格遞增。

行最簡形

(1)非零行的首非零元為1;

(2)非零行的首非零元所在列的其餘元均為零追?

6樓:嗯吶

階梯形矩陣需要滿足的條件:1.所有非零行在所有全零行的上面。即全零行都在矩陣的底部。

2.非零行的首項係數也稱作主元, 即最左邊的首個非零元素,嚴格地比上面行的首項係數更靠右。

3.首項係數所在列,在該首項係數下面的元素都是零。

最簡形矩陣需要滿足的條件:在矩陣中可畫出一條階梯線,線的下方全為0,每個臺階只有一行,臺階數即是非零行的行數,階梯線的豎線後面的第一個元素為非零元,也就是非零行的第一個非零元,則稱該矩陣為行階梯矩陣。若非零行的第一個非零元都為1,且這些非零元所在的列的其他元素都為0。

行最簡形矩陣性質:

1.行最簡形矩陣是由方程組唯一確定的,行階梯形矩陣的行數也是由方程組唯一確定的。

2.行最簡形矩陣再經過初等列變換,可化成標準形。

3.行階梯形矩陣且稱為行最簡形矩陣,即非零行的第一個非零元為1,且這些非零元所在的列的其他元素都是零。

用初等行變換把矩陣化為行最簡階梯形矩陣的方法:

1.第二行減去第一行的兩倍,

2.第三行減去第一行的三倍,

3.第三行減去第二行,

4.第二行除以三,

5.第三行除以二,

6.第二行加上第三行的7/3,

7.第一行加上第二行,

8.第一行減去第三行的兩倍。

7樓:匿名使用者

行階梯形矩陣:可畫出一條階梯線,線的下方全為0;每個臺階只有一行,臺階數即是非零行的行數,階梯線的豎線(每段豎線的長度為一行)後面的第一個元素為非零元,也就是非零行的第一個非零元.與都是行階梯形矩陣.

8樓:匿名使用者

定義 一個行階梯形矩陣若滿足   (1) 每個非零行的第一個非零元素為1;      (2) 每個非零行的第一個非零元素所在列的其他元素全為零,則稱之為行最簡形矩陣. 定義 如果一個矩陣的左上角為單位矩陣,其他位置的元素都為零,則稱這個矩陣為標準形矩陣. ( 區別看定義就行了) 還有還有最簡形矩陣不一定是階梯形矩陣,而階梯形矩陣一定是最簡形矩陣

9樓:匿名使用者

一矩陣經行變換使矩陣左下方數字都為0就是行階梯矩陣。行階梯形最簡型矩陣定義:階梯下全為0,臺階數是非零行的行數。

階梯豎線後第一個元素非零,也是非零行的第一個非零元,它所在的列其他元素全為0。

什麼是行階梯形矩陣,行最簡矩陣。說的通俗點 5

10樓:e拍

行階梯型矩陣,其形式是:從上往下,與每一行第一個非零元素同列的、位於這個元素下方(如果下方有元素的話)的元素都是0;

行最簡型矩陣,其形式是:從上往下,每一行第一個非零元素都是1,與這個1同列的所有其它元素都是0。

行階梯型矩陣和行最簡形矩陣都是線性代數中的某一類特定形式的矩陣。

行最簡型是行階梯型的特殊情形。

擴充套件資料

矩陣是高等代數學中的常見工具,作為解決線性方程的工具,矩陣也有不短的歷史。成書最遲在東漢前期的《九章算術》中,已經出現過以矩陣形式表示線性方程組係數以解方程的圖例,可算作是矩陣的雛形。

矩陣正式作為數學中的研究物件出現,則是在行列式的研究發展起來後。邏輯上,矩陣的概念先於行列式,但在實際的歷史上則恰好相反。

日本數學家關孝和(2023年)與微積分的發現者之一戈特弗裡德·威廉·萊布尼茨(2023年)近乎同時地獨立建立了行列式論。其後行列式作為解線性方程組的工具逐步發展。2023年,加布里爾·克拉默發現了克萊姆法則。

進入十九世紀後,行列式的研究進一步發展,矩陣的概念也應運而生。奧古斯丁·路易·柯西是最早將行列式排成方陣並將其元素用雙重下標表示的數學家。他還在2023年就在行列式的框架中證明了實對稱矩陣特徵根為實數的結論。

其後,詹姆斯·約瑟夫·西爾維斯特注意到,在作為行列式的計算形式以外,將數以行和列的形式作出的矩形排列本身也是值得研究的。在他希望引用數的矩形陣列而又不能用行列式來形容的時候,就用「matrix」一詞來形容。

阿瑟·凱萊被公認為矩陣論的奠基人,他開始將矩陣作為獨立的數學物件研究時,許多與矩陣有關的性質已經在行列式的研究中被發現了,這也使得凱萊認為矩陣的引進是十分自然的。

11樓:匿名使用者

■ 行階梯矩陣: ① 首元不一定是1,首元所在列的下方元素全為0 (上方不一定為0 );② 首元所在行的左邊元素全為0;③ 隨行數遞增首元右邊元素遞減;④ 一個階梯=一個非0行。若階梯數=k,則非0行=k,∴矩陣秩=k。

■ 行最簡矩陣: ①首元一定是1,首元1所在列的上下元素全為0;②首元1所在行的左邊元素全為0;③隨行數遞增首元1右邊元素遞減;④若有k個非0行,則矩陣秩=k;⑤方程組∞多解時用解空間基的線性迭加表示向量解。行最簡矩陣中《全0行》表示解空間基向量個數。

每個全0行寫成【xⅰ=ⅹⅰ】形式。⑥多於自由未知量數的《全0行》為多餘方程,捨去。

■ 行最簡矩陣一定是行階梯矩陣;行階梯矩陣未必是行最簡矩陣。如今應用最多是《行最簡矩陣》。

12樓:和塵同光

階梯形矩陣的特點:每行的第一個非零元的下面的元素均為零,且每行第一個非零元的列數依次增大,全為零的行在最下面

行簡化矩陣的特點:每行的第一個非零元均為1,其上下的元素均為零,且每行第一個非零元的列數依次增大,全為零的行在最下面。

**性代數中,什麼時候把矩陣化成行階梯型,什麼時候化成行最簡型??急急急

13樓:是你找到了我

1、如果只要求矩陣的秩,包括判斷非齊次線性方程組是否有解,化為階梯型即可。

2、如果想求線性方程組的解,特別是基礎解系,則一般應化為最簡型。

階梯型矩陣是矩陣的一種型別。他的基本特徵是如果所給矩陣為階梯型矩陣則矩陣中每一行的第一個不為零的元素的左邊及其所在列以下全為零。階梯型矩陣的基本特徵:

如果所給矩陣為階梯型矩陣則矩陣中每一行的第一個不為零的元素的左邊及其所在列以下全為零。

14樓:哥特式死亡幻境

在判斷方程組是否有解是時可以化成階梯型看秩是否相等,而解方程的時候則化成行最簡比較方便*^_^*題主加油~如果覺得有用請採納謝謝*^_^*

15樓:匿名使用者

過去手工計算,對增廣矩陣實施初等行變換,如果僅求係數矩陣及增廣矩陣的秩,只要化為【行階梯矩陣】即可;如果要求方程組的解,可進一步化為【行最簡矩陣】。如今計算機軟體算,統一化為【行最簡矩陣】。因為行最簡矩陣性質包含了行階梯矩陣的性質。

16樓:匿名使用者

是矩陣,不是行列式.(1)求秩時只需化為行階梯形.

(2)其它的(如求方程組的解)則需化為行最簡形.

這個選什麼?行簡化階梯形矩陣是最簡階梯型矩陣嗎

1.把任意一個矩陣 a化成行階梯型矩陣和簡化行階梯形矩陣的時候,能同時用初等行變換和初等列變換嗎?用階梯型矩陣求秩的時候呢?都是可以的.用初等行變換和初等列變換得到的結果是不同的,當然可以,即使只用一種變換,得到的結果也可能不同.2.表示矩陣外面用的是中括號還是小括號啊?年代不同了,以前用中括號的多...

請問劉老師行階梯型行最簡形行標準型有什麼區別?什麼時候應化為階梯形,什麼時候化為最簡形,什麼時

什麼區別看看書 定義至少應該知道 階梯形 求矩陣的秩,向量組的秩與極大無關組,判斷線性方程組解的存在性行最簡形 求方程組的通解,用極大無關組表示其餘向量,某向量由一個向量組線性表示 等價標準形 線性代數中矩陣初等行變換時什麼時候應化為階梯形,什麼時候化為最簡形矩陣?什麼是標準型?矩陣為了求逆矩陣需要...

矩陣怎麼化成行階梯和行最簡,一個矩陣怎麼化成行階梯和行最簡?

步驟如下 矩陣的一個重要用途是解線性方程組。線性方程組中未知量的係數可以排成一個矩陣,加上常數項,則稱為增廣矩陣。另一個重要用途是表示線性變換,即是諸如f x 4x之類的線性函式的推廣。設定基底後,某個向量v可以表示為m 1的矩陣,而線性變換f可以表示為行數為m的矩陣a,使得經過變換後得到的向量f ...