1樓:
數軸上a、b兩點之間的距離|ab|=|a-b|
5 3 7, /x-2/, 0 or 4,
[-3,4] 7 距離之和最短,x在兩點中間
閱讀下面的材料:點a、b在數軸上分別表示有理數a、b,a、b兩點之間的距離表示為|ab|.當a、b兩點中有一點
2樓:
(1)綜上所bai述,數軸上a、dub兩點之間的距離zhi|ab|=|a-b|.dao
(2)x-(-1)=2 解得:x=1
或-1-x=2,解
版得x=-3
所以數軸表示x和權-1的兩點a和b之間的距離表示為|x-(-1)|,如果|ab|=2那麼x值一定是-3或1.
(3)某搬運工要給圖5數軸上的-2、-1、0、1、2、3六處送貨,-2+(-1)+0+1+2+3=3,3÷5=0.6,所以放在0與1之間路程最短;
故答案為:(1)|a-b|(2)|x-(-1)|-3或1.
閱讀下面材料:已知點a.b在數軸上分別表示有理數a.b,a.b兩點之間的距離表示為/ab/
3樓:
(1)數軸上表示2和5的兩
點之間的距離是(3);表示-2和-5的兩點之間的距離是(3),表示-2和5的兩點之間的距離是(7)。
(2)數軸上表示x和-1的兩點a和b之間的距離是(丨x+1丨);如果|ab|=2,那麼x=(1或者-3)
(3)當代數式|x+1|+|x-2|取最小值時,相應的x的取值範圍是(-1≤x≤2)。
4樓:匿名使用者
你看這個**就有了
另外希望
採納哦!!
閱讀材料:我們知道:點a、b在數軸上分別表示有理數a、b,a、b兩點之間的距離表示為ab,在數軸上a、b兩點
5樓:手機使用者
(1)根據絕對值的意義可知,此點必在-1與3之間,故x-3<0,x+1>0,
∴原式可化為3-x=x+1,
∴x=1;
(2)根據題意,可知當-1≤x≤3時,|x-3|+|x+1|有最小值.
∴|x-3|=3-x,|x+1|=x+1,∴|x-3|+|x+1|=3-x+x+1=4;
(3)∵|x-3|+|x+1|=7,
若x>3,則原式可化為(x-3)+(x+1)=7,x=92;
若-1≤x≤3,則-(x-3)+(x+1)=7,x不存在;
若x<-1,則-(x-3)-(x+1)=7,x=-52;
∴x=9
2或x=-52.
故答案為:1,4,x=9
2或x=-52.
閱讀材料:我們知道:點a,b在數軸上分別表示有理數a,b,a,b兩點之間的距離表示為a……
6樓:小擎
由材料,原式表示的幾
何意義為x到3的距離+x到-1的距離之和=7,又3-(-1)=4<7,故該點不可能位於-1和3之間,分兩種情況討論:1、該點在-1左邊,得-1-x+3-x=7,解得x=-5/2;2、該點在3右邊,得x-(-1)+x-3=7,解得x=9/2. 綜上x的值為-5/2或9/2
1閱讀下面材料點A,B在數軸上分別表示實數a,b,A
數軸上表示2和5的兩點之間的距 離是 2 5 3 數軸上表示 2和 5的兩點之間的距離是 2 5 3 數軸上表示1和 3的兩點之間的距離是 1 3 4 數軸上表示x和 1的兩點a和b之間的距離是 x 1 x 1 如果 ab 2,那麼x為1或 3 當代數式 x 1 十 x 2 取最小值時,x 1 0,...
如圖,在數軸上A點表示數a,B點表示數b,AB表示A點和B點之間的距離AOB
解 du a 2 b 3a 0 a 2,b 6。1 ab的距zhi離 daob a 8 2 設c點的值為c。由版 ac 2bc 得 c a 2 c b 即 c 2 2 c 6 則當c 2時,得c 14,不合權前設 當 2 c 6時,得c 10 3 當c 6時,得c 14 所以 ac 2bc 時 c ...
點A在數軸上對應的數為2,若點B也在數軸上位於點A的左側,且線段AB的長為5,則點B在數軸上對應的數為
點 點b在數軸上對應的數為 3 故答案為 3 如圖,若點a在數軸上對應的數為a,點b在數軸上對應的數為b,且a,b滿足 a 2 b 1 2 0 1 求線段ab 已知點a在數軸上對應的數為a,點b對應的數為b,且 2b 6 a 1 2 0,a b之間的距離記作ab,定義 ab a zhi a 1,b ...