1樓:劉起雲雪賦
兩直線的方向向量
l1:a=(2,1,2)
,過點a(3,0,1)
l2:b=(2,1,2)
過點b(-1,1,0)
平行的,但是ab向量=(4,-1,1)必在所求平面上專,故a叉乘屬ab=(3,6,-6)是平面的法向量故平面方程時3x+6y-6z+d=0,代入b點知道d=-3故3x+6y-6z-3=0
即x+2y-2z-1=0
求過點a(2,1,3)且與直線l:(x+1)/3=(y-1)/2=z/-1垂直相交的直線的方程。謝
2樓:千山鳥飛絕
該直線方程為: (x-2)/2=(y-1)/(-1)=(z-3)/4解題過程如下:
過點a(2,1,3) 且與平面 (x+1)/3=(y-1)/2=z/(-1) 垂直的平面方程為 3(x-2)+2(y-1)-(z-3)=0 ,
聯立 3(x-2)+2(y-1)-(z-3)=0 與 (x+1)/3=(y-1)/2=z/(-1) 可得它們交點的座標為 p(2/7,13/7,-3/7)。
由兩點式可得所求直線 mp 的方程為 (x-2)/(2/7-2)=(y-1)/(13/7-1)=(z-3)/(-3/7-3) ,
化簡得 (x-2)/2=(y-1)/(-1)=(z-3)/4 。
3樓:匿名使用者
直線方程為:3x+2y-z-3=0。推理如下:
1、取直線方程(x+1)/3=(y-1)/2=z/(-1)上的一段向量:
當(x+1)/3=(y-1)/2=z/(-1) = 1, 點p座標(2,3,-1)
當(x+1)/3=(y-1)/2=z/(-1) = 2, 點q座標(5,5,-2)
所以pq=(3,2,-1)
2.設這個平面任一點座標是x,y,z 則平面上m(2,1,3)點至(x,y,z)向量為:
(x-2,y-1,z-3)
和pq=(3,2,-1)垂直,所以:
(x-2,y-1,z-3).(3,2,-1)=0
即:3(x-2)+2(y-1)-(z-5)=0
簡化:3x+2y-z-3=0
資料拓展:
1、各種不同形式的直線方程的侷限性:
(1)點斜式和斜截式都不能表示斜率不存在的直線;
(2)兩點式不能表示與座標軸平行的直線;
(3)截距式不能表示與座標軸平行或過原點的直線;
(4)直線方程的一般式中係數a、b不能同時為零。
2、空間直線的方向用一個與該直線平行的非零向量來表示,該向量稱為這條直線的一個方向向量。直線在空間中的位置, 由它經過的空間一點及它的一個方向向量完全確定。在歐幾里得幾何學中,直線只是一個直觀的幾何物件。
在建立歐幾里得幾何學的公理體系時,直線與點、平面等都是不加定義的,它們之間的關係則由所給公理刻畫。
4樓:0璟瑜
本題要用到向量的標積(數量積),如向量a和b垂直,則a·b=0 (點積)
取得直線方程(x+1)/3=(y-1)/2=z/(-1)上一段向量:
當(x+1)/3=(y-1)/2=z/(-1) = 1,則得點p座標(2,3,-1)
當(x+1)/3=(y-1)/2=z/(-1) = 2,則得點q座標(5,5,-2)
這段向量=pq=(3,2,-1)
2.設這個平面任一點座標是x,y,z 則平面上m(2,1,3)點至(x,y,z)向量為:(x-2,y-1,z-3)
這個向量和pq=(3,2,-1)垂直,故:(x-2,y-1,z-3)·(3,2,-1)=0
即:3(x-2)+2(y-1)-(z-5)=0
簡化:3x+2y-z-3=0
已知兩條直線l1l2,y3x1,直線l1在y軸上的截
兩直線平行,那麼斜率相等,已知直線的斜率為 3.那麼另一條直線的斜率也為 3 所以,直線為y 3x 3 如圖,直線l1的解析式為y1 3x 3,且l1與x軸交於點d,直線l2 的解析式為y2 kx b,經過a b兩點,且交直線 1 直線copyl1 y 3x 3與x軸交於點d,當y 0時,3x 3 ...
已知直線y 3x與y 1 2x 4求(1)這兩條直線的交
1 求交點,則將兩解析式聯立起來 得 3x 1 2x 4 解得 x 8 7 再將x 8 7帶入任意解析式,得到y 24 7即可以得到交點座標為 8 7,24 7 2 求s三角形,則利用三角形面積 s 底 高 2解得y 1 2x 4與y軸交點為 0,4 則三角形的底為4 又因為交點橫座標為 8 7 所...
如圖,求與兩條直線垂直相交的直線方程
很簡單 用兩直線共面的條件分別對這兩條已知的直線聯立方程,再用所求直線的方向向量與兩條已知曲線的方向向量的法向量平行就行 這是兩直線,來,x 3z 1是一個平面源,y 2z 3也是一個平面,兩bai個平面聯du立,就是它們的交zhi線,即直線。先把dao兩條已知直線的一般式換成點向式 x x0 a ...