1樓:墨汁諾
鏈式求導 = chain rule。
複合函式的求導法則,u是ρ,θ的函式,ρ,θ又是x,y的函式,那麼αu/αx還是ρ,θ的函式,所以αu/αx是x,y的複合函式,中間變數是ρ,θ。
f 對 u 求導後,依然是 u、v 的函式,所以,對 x 求偏導時,首先得先過 u、v 這一關。
也就是,fu 必須先對 u 求導,再乘以 u 對 x 的求導;
同時,fu 也必須對 v 求導,再乘以 v 對 x 的求導。
這兩部分加在一起,才完成了 fu 對 x 的偏導。
2樓:pasirris白沙
整體而言,這就是鏈式求導 = chain rule。
.1、f 對 u 求導後,依然是 u、v 的函式,所以,對 x 求偏導時,首先得先過 u、v 這一關。
也就是,fu 必須先對 u 求導,再乘以 u 對 x 的求導;
同時,fu 也必須對 v 求導,再乘以 v 對 x 的求導。
這兩部分加在一起,才完成了 fu 對 x 的偏導。
2、f 對 v 求導後,依然是 u、v 的函式,所以,對 x 求偏導時,同樣首先得先過 u、v 這一關。
也就是,fv 必須先對 u 求導,再乘以 u 對 x 的求導;
同時,fv 也必須對 v 求導,再乘以 v 對 x 的求導。
這兩部分加在一起,才完成了 fv 對 x 的偏導。
3、前面的1、2合在一起考慮,就是樓主**上的求導過程了。
在多元函式的微積分學習中,
a、本來就比一元函式複雜、囉嗦很多,學起來吃力一點很正常;
b、教師、教科書上誤導比比皆是,再加上有些教師解說能力、邏輯能力、教學方法都不及格的教師佔絕對多數,學起來就會更困難一些。
加油吧!
只要方法對,持之以恆,就一定駕輕就熟、登堂入室!
複合函式二階偏導數 (書上例題看不懂啊) 就求2階那一步看不懂是怎麼出來的。希望詳細點,文字表述也可以
3樓:匿名使用者
^求偏導數與單變元的求導類似,對x求導時將y,z看成常數即可。
當求二階偏導時,函式是-x/r^3寫成-x*(r^(-3)),是兩個函式的乘積,利用乘積的求導法則
=-1/r^3+(-x)*(-3r^(-4)*ar/ax)=題目等式
4樓:我愛上了叮噹貓
多元函式求二階偏導是原理跟一元函式是差不多的。
把求得的二元函式的一階偏導看成是一個新的多元函式,且符合題目中給出的條件。再對這個新的函式求偏導。
對於本題則是對新的多元函式z=-x/r^3,r=sqr(x^2+y^2+z^2),求二階偏導其實就是求z對r的一階偏導。
5樓:d八卦
(書上例題看不懂啊):是因為導數符號被人誤傳誤解。 tanu,x= tanu,r * tanr,x.
複合函式求二階偏導數,如圖,為什麼那兩項可以合併?
6樓:匿名使用者
混合偏導數在連續的條件下與求偏導的次序無關
抽象多元複合函式求二階偏導數的公式是什麼? 50
7樓:在下星辰
多元複合函式的高階偏導數是考研數學的重要考點,同時也是多元函式微分學部分的難點,考查題型可以是客觀題也可以是主觀題,該知識點還經常與微分方程一起出綜合題。
解決多元複合函式高階偏導關鍵在於畫出關係圖,同時弄明白函式偏導數依然為多元複合函式。
一、多元複合函式偏導數
上面公式可以簡單記為「連線相乘,分線相加」;也可以藉助微分形式不變性,即函式有幾個中間變數,則偏導有幾部分組成(不排除個別部分為零).
二、多元複合函式二階偏導數
對於複合函式二階偏導數,關鍵需要理解函式對中間變數的偏導數依然為多元複合函式,其關係與原來因變數與自變數關係完全一致,即:
先畫出關係圖:
對f求二階偏導數怎麼求
多元函式的複合函式二階偏導公式是什麼?為什麼書上沒有呢?
8樓:哎喲
公式為:y'=2x的導數為y''=2。
y=x²的導數為y'=2x,二階導數即y'=2x的導數為y''=2。
如果一個函式f(x)在某個區間i上有f''(x)(即二階導數)>0恆成立,那麼對於區間i上的任意x,y,總有:f(x)+f(y)≥2f[(x+y)/2],如果總有f''(x)<0成立,那麼上式的不等號反向。
9樓:看完就跑真刺激
各個分量的偏導數為0,這是一個必要條件。充分條件是這個多元函式的二階偏導數的行列式為正定或負定的。
如果這個多元函式的二階偏導數的行列式是半正定的則需要進一步判斷三階行列式。如果這個多元函式的二階偏導數的行列式是不定的,那麼這時不是極值點。
以二元函式為例,設函式z=f(x,y)在點(x。,y。)的某鄰域內有連續且有一階及二階連續偏導數,又fx(x。,y。),fy(x。,y。)=0,
令fxx(x。,y。)=a,fxy=(x。,y。)=b,fyy=(x。,y。)=c
則f(x,y)在(x。,y。)處是否取得極值的條件是
(1)ac-b*b>0時有極值
(2)ac-b*b<0時沒有極值
(3)ac-b*b=0時可能有極值,也有可能沒有極值如果是n元函式需要用行列式表示。
10樓:化化墨跡
一般都會用對應法則加下標來寫
如何求抽象複合函式的一,二階偏導數
11樓:匿名使用者
多元複合函式的高階偏導數是考研數學的重要考點,同時也是多元函式微分學部回分的難點,考查
答題型可以是客觀題也可以是主觀題,該知識點還經常與微分方程一起出綜合題。
解決多元複合函式高階偏導關鍵在於畫出關係圖,同時弄明白函式偏導數依然為多元複合函式。
一、多元複合函式偏導數
上面公式可以簡單記為「連線相乘,分線相加」;也可以藉助微分形式不變性,即函式有幾個中間變數,則偏導有幾部分組成(不排除個別部分為零).
二、多元複合函式二階偏導數
對於複合函式二階偏導數,關鍵需要理解函式對中間變數的偏導數依然為多元複合函式,其關係與原來因變數與自變數關係完全一致,即:
先畫出關係圖:
多元複合函式高階偏導求法
12樓:戰wu不勝的小寶
多元複合函式高階偏導求法如下:
一、多元複合函式偏導數
上面公式可以簡單記為「連線相乘,分線相加」;也可以藉助微分形式不變性,即函式有幾個中間變數,則偏導有幾部分組成(不排除個別部分為零).
二、多元複合函式二階偏導數
對於複合函式二階偏導數,關鍵需要理解函式對中間變數的偏導數依然為多元複合函式,其關係與原來因變數與自變數關係完全一致,即:
先畫出關係圖:
解決多元複合抽象函式高階偏導問題關鍵理清因變數與自變數關係,在解題過程中最後畫出關係圖,這樣可以避免多寫或漏寫。
偏導數的幾何意義:
表示固定面上一點的切線斜率。
偏導數 f'x(x0,y0) 表示固定面上一點對 x 軸的切線斜率;偏導數 f'y(x0,y0) 表示固定面上一點對 y 軸的切線斜率。
高階偏導數:如果二元函式 z=f(x,y) 的偏導數 f'x(x,y) 與 f'y(x,y) 仍然可導,那麼這兩個偏導函式的偏導數稱為 z=f(x,y) 的二階偏導數。二元函式的二階偏導數有四個:
f"xx,f"xy,f"yx,f"yy。
f"xy與f"yx的區別在於:前者是先對 x 求偏導,然後將所得的偏導函式再對 y 求偏導;後者是先對 y 求偏導再對 x 求偏導。當 f"xy 與 f"yx 都連續時,求導的結果與先後次序無關。
13樓:匿名使用者
高等數學第七版p70頁,例8
複合函式求導:δ
u/δx=(δu/δr)*(δr/δx)=-x/(r^3)-x/(r^3) 關於x的偏導數:(δu/δx)^2=δ[-x/(r^3)]/δx=-
=-=-
=-=-1/r^3+3x^2/r^5
14樓:zero醬
求複合函式的偏導數,關鍵在於找好路徑。鏈式法則是一個很好的解決工具。
拓展資料:
15樓:閃亮登場
多元複合函式的高階偏導數是考研數學的重要考點,同時也是多元函式微分學部分的難點,考查題型可以是客觀題也可以是主觀題,該知識點還經常與微分方程一起出綜合題。
解決多元複合函式高階偏導關鍵在於畫出關係圖,同時弄明白函式偏導數依然為多元複合函式。
一、多元複合函式偏導數
公式可以簡單記為「連線相乘,分線相加」;也可以藉助微分形式不變性,即函式有幾個中間變數,則偏導有幾部分組成(不排除個別部分為零).
二、多元複合函式二階偏導數
對於複合函式二階偏導數,關鍵需要理解函式對中間變數的偏導數依然為多元複合函式,其關係與原來因變數與自變數關係完全一致,即:
先畫出關係圖:
解決多元複合抽象函式高階偏導問題關鍵理清因變數與自變數關係,在解題過程中最後畫出關係圖,這樣可以避免多寫或漏寫.
求函式的二階偏導數要過程。二階偏導數求法
偏導數在數學中,一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定 相對於全導數,在其中所有變數都允許變化 偏導數在向量分析和微分幾何中是很有用的。定義x方向的偏導 設有二元函式z f x,y 點 x0,y0 是其定義域d內一點.把y固定在y0而讓x在x0有增量 x,相應地函式...
高數附圖,關於複合函式的二階偏導數問題
因為f u和f v是偏導 函 數,裡面也有x,他們的長相是f u u,v 和f u,v 括號裡一樣。先給採納.複合函式二階偏導數問題 u x,y z x z y x y 1 z x y x y z 2 求 u x 解 z x 2x 1 z x 3 z y 2y 1 z y 4 由 3 4 分別解出 ...
多元複合函式的二階偏導怎麼求,多元複合函式的二階偏導怎麼求
u x f x f e x cosy f e x siny,u xx u x x f e x cosy f e x cosy f e x siny f e x siny.同法求u yy 是這個不,我再看看 還有這個 可以先把複合函式先用u v或者f x g x 表示,求完一次後再把u v f x g...