高數附圖,關於複合函式的二階偏導數問題

2021-04-20 16:18:48 字數 4862 閱讀 1374

1樓:杭州飛揚教育

因為f'u和f'v是偏導「函」數,裡面也有x,他們的長相是f'u(u,v)和f(u,v)括號裡一樣。

2樓:匿名使用者

.......................先給採納....

複合函式二階偏導數問題

3樓:匿名使用者

u(x,y)=(∂z/∂x-∂z/∂y)/(x-y) (1)

z=x²+y²- φ(x+y+z) (2) 求:∂u/∂x=?

解: ∂z/∂x=2x-φ'(1+∂z/∂x) (3)

∂z/∂y=2y-φ'(1+∂z/∂y) (4)

由(3)、(4)分別解出:

∂z/∂x=(2x-φ')/(1+φ') (5)

∂z/∂y=(2y-φ')/(1+φ') (6)

將(5)、(6)代入(1)式,得到:

u(x,y)=(∂z/∂x-∂z/∂y)/(x-y)

=2/(1+φ')

即:u(x,y) = 2/(1+φ') (7) 這就是第二問題的第一步。

而 ∂u/∂x=-2φ''(1+∂z/∂x)/(1+φ')² 將(5)式代入,最後得到:

∂u/∂x = -2φ''(1+2x)/(1+φ')³ (8) 這是第二問題的最後一步!

多元複合函式高階偏導求法

4樓:戰wu不勝的小寶

多元複合函式高階偏導求法如下:

一、多元複合函式偏導數

上面公式可以簡單記為「連線相乘,分線相加」;也可以藉助微分形式不變性,即函式有幾個中間變數,則偏導有幾部分組成(不排除個別部分為零).

二、多元複合函式二階偏導數

對於複合函式二階偏導數,關鍵需要理解函式對中間變數的偏導數依然為多元複合函式,其關係與原來因變數與自變數關係完全一致,即:

先畫出關係圖:

解決多元複合抽象函式高階偏導問題關鍵理清因變數與自變數關係,在解題過程中最後畫出關係圖,這樣可以避免多寫或漏寫。

偏導數的幾何意義:

表示固定面上一點的切線斜率。

偏導數 f'x(x0,y0) 表示固定面上一點對 x 軸的切線斜率;偏導數 f'y(x0,y0) 表示固定面上一點對 y 軸的切線斜率。

高階偏導數:如果二元函式 z=f(x,y) 的偏導數 f'x(x,y) 與 f'y(x,y) 仍然可導,那麼這兩個偏導函式的偏導數稱為 z=f(x,y) 的二階偏導數。二元函式的二階偏導數有四個:

f"xx,f"xy,f"yx,f"yy。

f"xy與f"yx的區別在於:前者是先對 x 求偏導,然後將所得的偏導函式再對 y 求偏導;後者是先對 y 求偏導再對 x 求偏導。當 f"xy 與 f"yx 都連續時,求導的結果與先後次序無關。

5樓:匿名使用者

高等數學第七版p70頁,例8

複合函式求導:δ

u/δx=(δu/δr)*(δr/δx)=-x/(r^3)-x/(r^3) 關於x的偏導數:(δu/δx)^2=δ[-x/(r^3)]/δx=-

=-=-

=-=-1/r^3+3x^2/r^5

6樓:zero醬

求複合函式的偏導數,關鍵在於找好路徑。鏈式法則是一個很好的解決工具。

拓展資料:

7樓:閃亮登場

多元複合函式的高階偏導數是考研數學的重要考點,同時也是多元函式微分學部分的難點,考查題型可以是客觀題也可以是主觀題,該知識點還經常與微分方程一起出綜合題。

解決多元複合函式高階偏導關鍵在於畫出關係圖,同時弄明白函式偏導數依然為多元複合函式。

一、多元複合函式偏導數

公式可以簡單記為「連線相乘,分線相加」;也可以藉助微分形式不變性,即函式有幾個中間變數,則偏導有幾部分組成(不排除個別部分為零).

二、多元複合函式二階偏導數

對於複合函式二階偏導數,關鍵需要理解函式對中間變數的偏導數依然為多元複合函式,其關係與原來因變數與自變數關係完全一致,即:

先畫出關係圖:

解決多元複合抽象函式高階偏導問題關鍵理清因變數與自變數關係,在解題過程中最後畫出關係圖,這樣可以避免多寫或漏寫.

複合函式求二階偏導數,這一步轉換是怎麼做到的(紅色問好的那一步),求詳細過程

8樓:墨汁諾

鏈式求導 = chain rule。

複合函式的求導法則,u是ρ,θ的函式,ρ,θ又是x,y的函式,那麼αu/αx還是ρ,θ的函式,所以αu/αx是x,y的複合函式,中間變數是ρ,θ。

f 對 u 求導後,依然是 u、v 的函式,所以,對 x 求偏導時,首先得先過 u、v 這一關。

也就是,fu 必須先對 u 求導,再乘以 u 對 x 的求導;

同時,fu 也必須對 v 求導,再乘以 v 對 x 的求導。

這兩部分加在一起,才完成了 fu 對 x 的偏導。

9樓:pasirris白沙

整體而言,這就是鏈式求導 = chain rule。

.1、f 對 u 求導後,依然是 u、v 的函式,所以,對 x 求偏導時,首先得先過 u、v 這一關。

也就是,fu 必須先對 u 求導,再乘以 u 對 x 的求導;

同時,fu 也必須對 v 求導,再乘以 v 對 x 的求導。

這兩部分加在一起,才完成了 fu 對 x 的偏導。

2、f 對 v 求導後,依然是 u、v 的函式,所以,對 x 求偏導時,同樣首先得先過 u、v 這一關。

也就是,fv 必須先對 u 求導,再乘以 u 對 x 的求導;

同時,fv 也必須對 v 求導,再乘以 v 對 x 的求導。

這兩部分加在一起,才完成了 fv 對 x 的偏導。

3、前面的1、2合在一起考慮,就是樓主**上的求導過程了。

在多元函式的微積分學習中,

a、本來就比一元函式複雜、囉嗦很多,學起來吃力一點很正常;

b、教師、教科書上誤導比比皆是,再加上有些教師解說能力、邏輯能力、教學方法都不及格的教師佔絕對多數,學起來就會更困難一些。

加油吧!

只要方法對,持之以恆,就一定駕輕就熟、登堂入室!

複合函式的二階偏導數怎麼求

10樓:表俊悟奇範

求偏導數實際上

和求導沒有太多區別

把別的引數也看作常數即可

在得到一階偏導數之後

再求偏導一次

當然就是二階偏導數

如何求抽象複合函式的一,二階偏導數

11樓:匿名使用者

多元複合函式的高階偏導數是考研數學的重要考點,同時也是多元函式微分學部回分的難點,考查

答題型可以是客觀題也可以是主觀題,該知識點還經常與微分方程一起出綜合題。

解決多元複合函式高階偏導關鍵在於畫出關係圖,同時弄明白函式偏導數依然為多元複合函式。

一、多元複合函式偏導數

上面公式可以簡單記為「連線相乘,分線相加」;也可以藉助微分形式不變性,即函式有幾個中間變數,則偏導有幾部分組成(不排除個別部分為零).

二、多元複合函式二階偏導數

對於複合函式二階偏導數,關鍵需要理解函式對中間變數的偏導數依然為多元複合函式,其關係與原來因變數與自變數關係完全一致,即:

先畫出關係圖:

複合函式二階偏導數 (書上例題看不懂啊) 就求2階那一步看不懂是怎麼出來的。希望詳細點,文字表述也可以

12樓:匿名使用者

^求偏導數與單變元的求導類似,對x求導時將y,z看成常數即可。

當求二階偏導時,函式是-x/r^3寫成-x*(r^(-3)),是兩個函式的乘積,利用乘積的求導法則

=-1/r^3+(-x)*(-3r^(-4)*ar/ax)=題目等式

13樓:我愛上了叮噹貓

多元函式求二階偏導是原理跟一元函式是差不多的。

把求得的二元函式的一階偏導看成是一個新的多元函式,且符合題目中給出的條件。再對這個新的函式求偏導。

對於本題則是對新的多元函式z=-x/r^3,r=sqr(x^2+y^2+z^2),求二階偏導其實就是求z對r的一階偏導。

14樓:d八卦

(書上例題看不懂啊):是因為導數符號被人誤傳誤解。  tanu,x= tanu,r * tanr,x.

複合函式求二階偏導數,如圖,為什麼那兩項可以合併?

15樓:匿名使用者

混合偏導數在連續的條件下與求偏導的次序無關

複合函式二階求偏導題目求助!

16樓:匿名使用者

理解好複合函式的複合關係,這類問題就好解決了.

這題裡z是一個複合函版數權

,要知道它是f和u的複合函式,而u是x和y的二元函式。複合函式的鏈式求導法則就是弄清楚這個複合順序後,按順序求導就可以了。比如本題,先求z關於x的偏導,即先求f對u的導數,再求u對x的導數,得z'(x)=f'(u)2x,然後,再繼續求z'(x)關於y的偏導數,這時候當然也需要首先將z'(x)理解為複合函式,將複合關係搞定就好,z'(x)=f'(u)2x,所以,它是通過f'(u)首先理解為關於u的函式,再將u理解為關於y 的函式,於是就有z''(xy)=f''(u)2x*2y=4xyf''(u)。

17樓:匿名使用者

z'(x)=f'(u)2x

z''(xy)=f''(u)2x*2y=4xyf''(u)選d

多元複合函式的二階偏導怎麼求,多元複合函式的二階偏導怎麼求

u x f x f e x cosy f e x siny,u xx u x x f e x cosy f e x cosy f e x siny f e x siny.同法求u yy 是這個不,我再看看 還有這個 可以先把複合函式先用u v或者f x g x 表示,求完一次後再把u v f x g...

求抽象函式二階偏導,如何求抽象複合函式的一,二階偏導數

是的100分。普通的偏導數你會求,你得知道對誰求偏導數。書上有複合函式偏導數公式我就不解釋了,這裡的u v w你要設成對應的x 2x y xy。然後就是.我給你公式吧.計算過程很多,對應的我給你顏色標出了。我只列出一階x的和二階x的,關於先x後y的和y的你以此類推即可。按照複合函式的求導法則逐項進行...

二階導數的求導過程這個題沒看懂,高數二階偏導數,這個題完全看不懂,有沒有詳細解釋啊

這裡都是二階偏導,1 z x y f1 z y x f1 f2 所以得到二階偏導 z x y f11 z x y f1 xy f11 y f12 z y x f11 x f12 f21 x f22 x f11 2x f12 f22 2 z x f1 f2 1 y z y f2 x y 所以得到二階偏...