誰能給我幾個常用的等價無窮小的公式啊

2022-02-25 01:54:09 字數 4832 閱讀 1526

1樓:韭菜雞蛋君

高等數學求解極限問題,2個常用的等價無窮小的妙用

2樓:一元六個

你好,這裡有幾個等價無窮小量的公式

當x→0時, sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~1/2*(x^2) (a^x)-1~x*lna (e^x)-1~x ln(1+x)~x (1+bx)^a-1~abx [(1+x)^1/n]-1~(1/n)*x loga(1+x)~x/lna

3樓:匿名使用者

當x→0,且x≠0,則 x~sinx~tanx~arcsinx~arctanx; x~ln(1+x)~(e^x-1); (1-cosx)~x*x/2; [(1+x)^n-1]~nx; loga(1+x)~x/lna;a的x次方~xlna;(1+x)的1/n次方~1/nx(n為正整數);注:^ 是乘方,~是等價於

4樓:風蕭蕭邊歌幾處

當x→0時, sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~1/2*(x^2) (a^x)-1~x*lna (e^x)-1~x ln(1+x)~x (1+bx)^a-1~abx [(1+x)^1/n]-1~(1/n)*x loga(1+x)~x/lna

等價無窮小替換公式一共有多少?要詳細的

5樓:心隱

等價無窮小替換公式復如下 :

以上各式可通制過泰勒式推匯出來。

等價無窮小是無窮小的一種,也是同階無窮小。從另一方面來說,等價無窮小也可以看成是泰勒公式在零點到一階的泰勒公式。

6樓:擦擦擦擦擦

在等價無窮小的情況下,才能夠用這公式變換。

7樓:匿名使用者

等價無窮小替換公式很多

常用的如下:

還有泰勒公式推導的一些

如:x-arcsinx~(x^3)/6

tanx-sinx~(x^3)/2

e^x-1~x

tanx-x~(x^3)/3等等

8樓:謙待成功

注意:x-arcsinx~負的(x^3)/6

ps:用泰勒公式或洛必達法則均可得證

9樓:對他說

各式可通過泰bai

勒展開式

du推匯出來

等價無zhi窮小是

無窮小的一

dao種,也是同階無窮小。從專另一方屬面來說,等價無窮小也可以看成是泰勒公式在零點到一階的泰勒公式。

擴充套件資料:

求極限時,使用等價無窮小的條件:

1. 被代換的量,在取極限的時候極限值為0;

2. 被代換的量,作為被乘或者被除的元素時可以用等價無窮小代換,但是作為加減的元素時就不可以,加減時可以整體代換,不一定能隨意單獨代換或分別代換。

高等數學中所有等價無窮小的公式

10樓:夢色十年

1、e^x-1~x (x→0)

2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2)~1/2x^4 (x→0)5、sinx~x (x→0)

6、tanx~x (x→0)

7、arcsinx~x (x→0)

8、arctanx~x (x→0)

9、1-cosx~1/2x^2 (x→0)10、a^x-1~xlna (x→0)

11、e^x-1~x (x→0)

12、ln(1+x)~x (x→0)

13、(1+bx)^a-1~abx (x→0)14、[(1+x)^1/n]-1~1/nx (x→0)15、loga(1+x)~x/lna(x→0)擴充套件資料等價無窮小替換是計算未定型極限的常用方法,它可以使求極限問題化繁為簡,化難為易。

求極限時,使用等價無窮小的條件:

1、被代換的量,在取極限的時候極限值為0;

2、被代換的量,作為被乘或者被除的元素時可以用等價無窮小代換,但是作為加減的元素時就不可以。

在同一點上,這兩個無窮小之比的極限為1,稱這兩個無窮小是等價的。等價無窮小也是同階無窮小。從另一方面來說,等價無窮小也可以看成是泰勒公式在零點到一階的泰勒公式。

11樓:匿名使用者

▄︻┻═┳一 根據arcsinx的泰勒公式,可以輕鬆得到為同階不等價無窮小。x→0,時x→sinx ;

x→arcsinx ; x→tanx ;x→arctanx; x→ln(1+x); x→(e^x-1);

[(1+x)^n-1]→nx;(1-cosx)→x*x/2;a^x-1→xlna, ln(1+x)→x;麥克勞林公式也是,

那個符號不好寫,你課本上或者習題裡有.例1 limx→0tanx-sinxx3

給你舉幾個利用無窮小的例子

例1 limx→0tanx-sinxx3

解:原式=limx→0sinx(1-cosx)x3cosx=limx→0x·12x2x3(∵ sinx~x,1-cosx~x22)=12

此題也可用羅比塔法則做,但不能用性質④做。

∵ tanx-sinxx3=x-xx3=0,不滿足性質④的條件,否則得出錯誤結論0。

例2 limx→0e2x-31+xx+sinx2

解:原式=limx→0e2x-1-(31+x-1)x+x2=limx→02x-13xx(1+x)=53

例3 limx→0(1x2-cot2x)

解法1:原式=limx→0sin2x-x2cos2xx2sin2x

=limx→0(sinx+xcosx)(sinx-xcosx)x4

=limx→0x2(1+cosx)(1-cosx)x4 (∵ sinx~x)

=limx→0(1+cosx)(1-cosx)x2

=limx→012x2·(1+cosx)x2=1

解法2:原式=limx→0tan2x-x2x2tan2x

=limx→0(tanx+x)(tanx-x)x4

=limx→02x(tanx-x)x44 (∵ tanx~x)

=limx→02(tanx-x)x3

=limx→02(sec2x-1)3x2

=23limx→0tan2xx2=23 (∵ tanx~x)

例4[3] limx→0+tan(sinx)sin(tanx)

解:原式=limx→0+sec2(sinx)cosx2tan(sinx)cos(tanx)sec2x2sin(tanx) (用羅比塔法則)

=limx→0+sec2(sinx)cosxcos(tanx)sec2x·limx→0+sin(tanx)tan(sinx) (分離非零極限乘積因子)

=limx→0+sin(tanx)tan(sinx) (算出非零極限)

=limx→0+cos(sinx)sec2x2sin(tanx)sec2(sinx)cosx2tan(sinx) (用羅比塔法則)

=limx→0+cos(sinx)sec2xsec2(sinx)cosx·limx→0+tan(sinx)sin(tanx)

=limx→0+tan(sinx)sin(tanx)

出現迴圈,此時用羅比塔法則求不出結果。怎麼辦?用等價無窮小代換。

∵ x~sinx~tanx(x→0)

∴ 原式=limx→0+xx=1而得解。

12樓:匿名使用者

當x→0,且x≠0,則

x~sinx~tanx~arcsinx~arctanx;

x~ln(1+x)~(e^x-1);

(1-cosx)~x*x/2;

[(1+x)^n-1]~nx;

loga(1+x)~x/lna;

a的x次方~xlna;

(1+x)的1/n次方~1/nx(n為正整數);

注:^ 是乘方,~是等價於,這是我做題的時候總結出來的。

13樓:匿名使用者

利用等價無窮小來求極限是一種很方便的方法,同時等價無窮小的知識也是一元微分學的基礎知識之一。

為了用好等價無窮小,記住一些基本的等價無窮小公式是必要的。

當x→0,且x≠0,則

x--sinx--tanx--arcsinx--arctanx;

x--ln(1+x)--(e^x-1);

(1-cosx)--x*x/2;

[(1+x)^n-1]--nx;

注:^ 是乘方,-- 是等價於。

參考資料:《高等數學》

14樓:匿名使用者

(1) sinx~x(x→0) arcsinx~x(x→0)(2) tanx~x (x→0) arctanx~x (x→0)(3) ln(1+x)~x (x→0) e∧x —1~x (x→0)(4) (1+小)∧a -1 ~ax(x→0)(a≠0)1- cosx ~1/2x∧2 (x→0)

求常用的等價無窮小替換

15樓:諾諾百科

當x→0時,

sinx~x

tanx~x

arcsinx~x

arctanx~x

1-cosx~x^2/2

a^x-1~xlna

e^x-1~x

ln(1+x)~x

(1+bx)^a-1~abx

[(1+x)^1/n]-1~1/nx

loga(1+x)~x/lna

求極限時,使用等價無窮小的條件:

被代換的量,在取極限的時候極限值為0;

被代換的量,作為被乘或者被除的元素時可以用等價無窮小代換,但是作為加減的元素時就不可以。

做題時常用的等價無窮小有哪些,常用等價無窮小

當 x 0x 0 時 01 sinx xsinx x 02 tanx xtanx x 03 arcsinx xarcsinx x 04 arctanx xarctanx x 05 ln 1 x xln 1 x x 06 ex 1 xex 1 x 07 1 cosx 12x21 cosx 12x2 0...

在考研中高數等價無窮小的使用限制

不會。湯神說到本質上了。因為加減用的話,是因為不夠階數,所以才錯。但是你可以把它到或者弄到足夠的階數,就不會錯,換句話說就是精確度問題。給你一個簡單的例子,x趨近0,分子是x sinx,分母是x的3次方,你等價無窮小,分子就成了x x 0了。顯然是錯誤。因為你這樣子等價的話,分子應該是3階的,不可能...

誰能給我光良的,誰能給我光良的資料

這裡算詳細吧 誰能給我光良 品冠的故事?謝謝!我只知道他們很早就分道揚鑣的。只有光良發展得比較好,一曲 童話 讓大家認識了光良 品冠全名 黃品冠 光良全名 王光良 1994年,李宗盛在馬來西亞的一個藝人選拔賽上當評委,結果光良和品冠上臺表演被李宗盛相中!同年,在李宗盛的引見和幫助下,光良與品冠在馬來...