1樓:
實數,是有理數和無理數的總稱。
數學上,實數定義為與數軸上的點相對應的數。實數可以直觀地看作有限小數與無限小數,實數和數軸上的點一一對應。但僅僅以列舉的方式不能描述實數的整體。實數和虛數共同構成複數。
實數可以分為有理數和無理數兩類,或代數數和超越數兩類。實數集通常用黑正體字母 r 表示。r表示n 維實數空間。實數是不可數的。實數是實數理論的核心研究物件。
所有實數的集合則可稱為實數系(real number system)或實數連續統。任何一個完備的阿基米德有序域均可稱為實數系。在保序同構意義下它是惟一的,常用r表示。
由於r是定義了算數運算的運算系統,故有實數系這個名稱。
實數可以用來測量連續的量。理論上,任何實數都可以用無限小數的方式表示,小數點的右邊是一個無窮的數列(可以是迴圈的,也可以是非迴圈的)。在實際運用中,實數經常被近似成一個有限小數(保留小數點後 n 位,n為正整數)。
在計算機領域,由於計算機只能儲存有限的小數位數,實數經常用浮點數來表示。
2樓:
可以寫成整分數的數和0。可以這樣簡單的理解
實數是不是指所有的數?如果不是,那什麼數不屬於實數呢?
3樓:假面
實數並不是指所有數。
比如虛數就不在實數的範圍內
附數的分類圖:
擴充套件資料:
實數,是有理數和無理數的總稱。數學上,實數定義為與數軸上的實數,是有理數和無理數的總稱。數學上,實數定義為與數軸上的實數,點相對應的數。
實數可以直觀地看作有限小數與無限小數,實數和數軸上的點一一對應。但僅僅以列舉的方式不能描述實數的整體。實數和虛數共同構成複數。
實數可以分為有理數和無理數兩類,或代數數和超越數兩類。實數集通常用黑正體字母 r 表示。r表示n維實數空間。實數是不可數的。實數是實數理論的核心研究物件。
所有實數的集合則可稱為實數系(real number system)或實數連續統。任何一個完備的阿基米德有序域均可稱為實數系。在保序同構意義下它是惟一的,常用r表示。
由於r是定義了算數運算的運算系統,故有實數系這個名稱。
實數可以用來測量連續的量。理論上,任何實數都可以用無限小數的方式表示,小數點的右邊是一個無窮的數列(可以是迴圈的,也可以是非迴圈的)。在實際運用中,實數經常被近似成一個有限小數(保留小數點後 n 位,n為正整數)。
在計算機領域,由於計算機只能儲存有限的小數位數,實數經常用浮點數來表示。
封閉性有序性
傳遞性阿基米德性質
稠密性完備性
作為度量空間或一致空間,實數集合是個完備空間,它有以下性質:
一、所有實數的柯西序列都有一個實數極限。
實數是有理數的完備化——這亦是構造實數集合的一種方法。
極限的存在是微積分的基礎。實數的完備性等價於歐幾里德幾何的直線沒有「空隙」。
二、 「完備的有序域」
實數集合通常被描述為「完備的有序域」,這可以幾種解釋。
另外,有序域滿足戴德金完備性,這在上述公理中已經定義。上述的唯一性也說明了這裡的「完備」是指戴德金完備性的意思。這個完備性的意思非常接近採用戴德金分割來構造實數的方法,即從(有理數)有序域出發,通過標準的方法建立戴德金完備性。
4樓:匿名使用者
您好,很高興為您解答。
與實數相對的就是虛數嘍。這是高中會學的內容。虛數比如1+2i,虛數分為實部和虛部,在上面那個虛數中,1是實部,2是虛部,其中規定i^2=-1
希望我的回答對您有幫助,望採納,謝謝。
實數是指什麼數
5樓:匿名使用者
詞典含義
[編輯本段]
shíshù
(一)數學名詞。不存在虛數部分的複數,有理數和無理數的總稱。
(二)真實的數字。【例】公司到底還有多少錢?請你告訴我實數!
基本概念
[編輯本段]
實數包括有理數和無理數。其中無理數就是無限不迴圈小數和開根開不盡的數,有理數就包括無限迴圈小數、有限小數、整數。
數學上,實數直觀地定義為和數軸上的點一一對應的數。本來實數僅稱作數,後來引入了虛數概念,原本的數稱作「實數」——意義是「實在的數」。
實數可以分為有理數和無理數兩類,或代數數和超越數兩類,或正數,負數和零三類。實數集合通常用字母 r 或 r^n 表示。而 r^n 表示 n 維實數空間。
實數是不可數的。實數是實分析的核心研究物件。
實數可以用來測量連續的量。理論上,任何實數都可以用無限小數的方式表示,小數點的右邊是一個無窮的數列(可以是迴圈的,也可以是非迴圈的)。在實際運用中,實數經常被近似成一個有限小數(保留小數點後 n 位,n 為正整數)。
在計算機領域,由於計算機只能儲存有限的小數位數,實數經常用浮點數來表示。
①相反數(只有符號不同的兩個數,我們就說其中一個是另一個的相反數) 實數a的相反數是-a
②絕對值(在數軸上一個數所對應的點與原點0的距離) 實數a的絕對值是:│a│=①a為正數時,|a|=a
②a為0時, |a|=0
③a為負數時,|a|=-a
③倒數 (兩個實數的乘積是1,則這兩個數互為倒數) 實數a的倒數是:1/a (a≠0)
歷史**
[編輯本段]
埃及人早在大約公元前2023年就開始運用分數了。在公元前500年左右,以畢達哥拉斯為首的希臘數學家們意識到了無理數存在的必要性。印度人於公元600年左右發明了負數,據說中國也曾發明負數,但稍晚於印度。
直到17世紀,實數才在歐洲被廣泛接受。18世紀,微積分學在實數的基礎上發展起來。直到2023年,德國數學家康托爾第一次提出了實數的嚴格定義。
相關定義
[編輯本段]
從有理數構造實數
實數可以用通過收斂於一個唯一實數的十進位制或二進位制如 所定義的序列的方式而構造為有理數的補全。實數可以不同方式從有理數構造出來。這裡給出其中一種,其他方法請詳見實數的構造。
公理的方法
設 r 是所有實數的集合,則:
集合 r 是一個域: 可以作加、減、乘、除運算,且有如交換律,結合律等常見性質。
域 r 是個有序域,即存在全序關係 ≥ ,對所有實數 x, y 和 z:
若 x ≥ y 則 x + z ≥ y + z;
若 x ≥ 0 且 y ≥ 0 則 xy ≥ 0。
集合 r 滿足戴德金完備性,即任意 r 的非空子集 s (s∈r,s≠φ),若 s 在 r 內有上界,那麼 s 在 r 內有上確界。
最後一條是區分實數和有理數的關鍵。例如所有平方小於 2 的有理數的集合存在有理數上界,如 1.5;但是不存在有理數上確界(因為 √2 不是有理數)。
實數通過上述性質唯一確定。更準確的說,給定任意兩個戴德金完備的有序域 r1 和 r2,存在從 r1 到 r2 的唯一的域同構,即代數學上兩者可看作是相同的。
相關性質
[編輯本段]
基本運算
實數可實現的基本運算有加、減、乘、除、平方等,對非負數還可以進行開方運算。實數加、減、乘、除(除數不為零)、平方後結果還是實數。任何實數都可以開奇次方,結果仍是實數,只有非負實數,才能開偶次方其結果還是實數。
完備性作為度量空間或一致空間,實數集合是個完備空間,它有以下性質:
所有實數的柯西序列都有一個實數極限。
有理數集合就不是完備空間。例如,(1, 1.4, 1.
41, 1.414, 1.4142, 1.
41421, ...) 是有理數的柯西序列,但沒有有理數極限。實際上,它有個實數極限 √2。
實數是有理數的完備化——這亦是構造實數集合的一種方法。
極限的存在是微積分的基礎。實數的完備性等價於歐幾里德幾何的直線沒有「空隙」。
「完備的有序域」
實數集合通常被描述為「完備的有序域」,這可以幾種解釋。
首先,有序域可以是完備格。然而,很容易發現沒有有序域會是完備格。這是由於有序域沒有最大元素(對任意元素 z,z + 1 將更大)。所以,這裡的「完備」不是完備格的意思。
另外,有序域滿足戴德金完備性,這在上述公理中已經定義。上述的唯一性也說明了這裡的「完備」是指戴德金完備性的意思。這個完備性的意思非常接近採用戴德金分割來構造實數的方法,即從(有理數)有序域出發,通過標準的方法建立戴德金完備性。
這兩個完備性的概念都忽略了域的結構。然而,有序群(域是種特殊的群)可以定義一致空間,而一致空間又有完備空間的概念。上述完備性中所述的只是一個特例。
(這裡採用一致空間中的完備性概念,而不是相關的人們熟知的度量空間的完備性,這是由於度量空間的定義依賴於實數的性質。)當然,r 並不是唯一的一致完備的有序域,但它是唯一的一致完備的阿基米德域。實際上,「完備的阿基米德域」比「完備的有序域」更常見。
可以證明,任意一致完備的阿基米德域必然是戴德金完備的(當然反之亦然)。這個完備性的意思非常接近採用柯西序列來構造實數的方法,即從(有理數)阿基米德域出發,通過標準的方法建立一致完備性。
「完備的阿基米德域」最早是由希爾伯特提出來的,他還想表達一些不同於上述的意思。他認為,實數構成了最大的阿基米德域,即所有其他的阿基米德域都是 r 的子域。這樣 r 是「完備的」是指,在其中加入任何元素都將使它不再是阿基米德域。
這個完備性的意思非常接近用超實數來構造實數的方法,即從某個包含所有(超實數)有序域的純類出發,從其子域中找出最大的阿基米德域。
6樓:藺lin號
實數包括有理數和無理數。其中無理數就是無限不迴圈小數和開根開不盡的數,有理數就包括無限迴圈小數、有限小數、整數。
7樓:
實數是有理數和無理數的統稱。
在數軸上的點和實數是一一對應的。
數學分析裡,有理數的分割定義了無理數,從而構成了實數概念。
所謂有理數的分割是指有理數的兩個真子集a和a',滿足任一有理數a∈a或a∈a',兩者必居其一且僅居其一。a中任一元素均小於a』中任一元素。則a和a'是有理數的一個分割,稱a為分割的下類,a』為分割上類。
8樓:匿名使用者
在一個數軸上所有點的集合,所以包括所有有理數(整數,分數,無限迴圈小數)和無理數(無限不迴圈小數),這些都是實數
實屬對應的虛數,虛數在一般的數軸上就不能表示出來了,舉個例子,根號裡面是負數,在實數範圍內無意義,但它是一個虛數
實數是什麼,什麼是實數,什麼是虛數
實數是有理數和無理數的總稱。數學上,實數定義為與數軸上的實數,點相對應的數。實數可以直觀地看作有限小數與無限小數,實數和數軸上的點一一對應。但僅僅以列舉的方式不能描述實數的整體。實數和虛數共同構成複數。實數可以用來測量連續的量。理論上,任何實數都可以用無限小數的方式表示,小數點的右邊是一個無窮的數列...
i是什麼數,是虛數,還是純虛數,還是實數
虛數,i的平方等於 1,也是虛數的基本單位。整數的單位是1 解析 i是虛數 i是純虛數 i不是實數 數學問題什麼是實數,虛數純虛數 實數 有理數和無理數的總稱.其中無理數就是無限不迴圈小數,有理數就包括整數和分數.虛數 在數學裡,將平方是負數的數定義為純虛數.所有的虛數都是複數.這種數有一個專門的符...
x是什麼實數時,根號下3x方,是什麼實數時,根號3的平方減X減
解 x為任意實數 3x2 都有意義 如果x 0 3x2 0 如果 x 0 3x2 0 所以 x為任意實數 3x2 0 是什麼實數時,根號3 的平方減x減2 如果你的意思是說 根號 3x 2 x 2 有意義 那麼就是3x 2 x 2 3x 2 x 1 大於等於0 即得到x大於等於1 或x小於等於 2 ...