在數學中,什麼叫定理,舉例說明,在數學中判定定理與性質定理的區別是什麼?含義是什麼?

2022-03-16 23:29:20 字數 1521 閱讀 4740

1樓:束晗昱機醉

定理:1、通過真命題(公理或其他已被證明的定理)出發,經過受邏輯限制的演繹推導,證明為正確的結論的命題或公式,例如「平行四邊形的對邊相等」就是平面幾何中的一個定理。

2、一般來說,在數學中,只有重要或有趣的陳述才叫定理,證明定理是數學的中心活動。相信為真但未被證明的數學敘述為猜想,當它被證明為真後便是定理。它是定理的**,但並非唯一**。

一個從其他定理引伸出來的數學敘述,可以不經過證明成為猜想的過程,成為定理。

如上所述,定理需要某些邏輯框架,繼而形成一套公理(公理系統)。同時,一個推理的過程,容許從公理中引出新定理和其他之前發現的定理。

在命題邏輯中,所有已證明的敘述都稱為定理。

在數學中判定定理與性質定理的區別是什麼?含義是什麼?

2樓:匿名使用者

舉例說明,直線與平面平行的判定定理指的是如何判定直線與平面平行,而它的性質定理指的是有線面平行得出什麼性質

3樓:靖義邶鶯

對邊相等這一些性質,用的時候只要已知平行四邊行。以後做題用性質定理的時候多。

這兩個定理正好相反,就用性質定理;讓證明它市平行四邊形就用判定定理舉個例子

平行四邊行的判定定理和性質定理

判定定理需要根據對邊平行、對邊相等這些已知條件判定它為平行四邊形。

性質定理必須是已知條件給的是一個平行四邊行,這樣可根據這個已知條件推斷出對邊平行

數學中,什麼叫若爾當定理

4樓:匿名使用者

設c為平面r2上的一條簡單閉曲線。那麼c的像的補集由兩個不同的連通分支組成。其中一個分支是有界的(內部),另外一個是無界的(外部)。

c的像就是任何一個分支的邊界。 若爾當曲線定理表面上是明顯的,但要證明它十分困難。對於較簡單的閉曲線,例如多邊形,是比較容易證明的,但要把它推廣到所有種類的曲線,包括無處可微的曲線如科赫曲線,便十分困難。

該定理對於球面上的若爾當曲線也成立,但對於環面上的若爾當曲線不成立。

數學中的定義,定理,性質怎麼區分

5樓:匿名使用者

定義:原指對事物做出的明確價值描述。現代定義:

對於一種事物的本質特徵或一個概念的內涵和外延的確切而簡要的說明;或是透過列出一個事件或者一個物件的基本屬性來描述或規範一個詞或一個概念的意義;被定義的事務或者物件叫做被定義項,其定義叫做定義項。

如:平行四邊形的定義:兩組對邊分別平行的四邊形,

定理:是經過受邏輯限制的證明為真的陳述。一般來說,在數學中,只有重要或有趣的陳述才叫定理。證明定理是數學的中心活動。

圖形的性質與判定都是定理,

性質:從客觀角度認知事物的形式,從廣義上講:性質就是一件事物與其它事物的聯絡【如果一件事物能使一件事物發生改變那麼這兩件事物便有聯絡】。

如:平行四邊形的性質:對邊平行,對邊相等,對角線互相平分,中心對稱圖形。

Z在數學中是什麼意思,card在數學中是什麼意思?

z在數學中的意思是 z 整數集 例如 3,2,1,0,1,2,3 像這些數字。注意 常用的字母代表一定要記牢!n 自然數集 z 整數集 q 有理數集 r 實數集 c 複數集 除法得到的是商和餘數,如下 7 4,7中最多有一個4,還多3,那麼這個商就是1,餘數就是3 9 3,9中最多有3個3,且沒有多...

在數學中r表示什麼d表示什麼,在數學裡表示什麼意思?

在平面幾何中,r通常表示圓的半徑,d通常表示圓的直徑。數學中r表示圓半徑,d表示圓直徑。數學中圓規r表示半徑,d表示直徑。r是半徑,d是直徑,d是r的兩倍 這個字母可以代表很多意義,一般來說r代表半徑,d代表直徑或者距離 在數學裡表示什麼意思?1 數學上 工程 代表相等中心距或鋼筋之間的間距,如2 ...

用在數學上含義是什麼,在數學中是什麼意思?

1 表示圓周率 2 表示180度 一個圓,周長和直徑的固定比例。所以 d是周長 高數中,也是一個超越數 在數學中是什麼意思?在數學中表示,求多個數的積。常用的符號有兩個 求和 表示求多個數連加的和。求積 表示求多個數連乘的乘積。是希臘字母,即 的大寫形式,在數學中表示求積運算或直積運算,形式上類似於...