1 2 3 4一直加到174等於幾多

2022-05-28 04:11:54 字數 6199 閱讀 9025

1樓:

1+2+3+4一直加到174等於15225。

一、這道題用到了等差數列求和公式。

等差數列是常見數列的一種,可以用a、p表示。

如果一個數列從第二項起,每一項與它的前一項的差等於同一個常數,這個數列就叫做等差數列。

這個常數叫做等差數列的公差,公差用字母d表示。

例如:1,2,3,4,5……n。等差數列的通項公式為:an=a1+(n-1)d。前n項和公式為:sn=n*a1+n(n-1)d/2或sn=n(a1+an)/2。

二、關於數列:

數列(sequence of number)是以正整數集(或它的有限子集)為定義域的函式,是一列有序的數。

數列中的每一個數都叫做這個數列的項。

排在第一位的數稱為這個數列的第1項(通常也叫做首項),排在第二位的數稱為這個數列的第2項……排在第n位的數稱為這個數列的第n項,通常用an表示。

2樓:情感e解憂

(1+174)×((174-1)÷2+1)÷2=

這是小學奧數題

3樓:滿意請採納喲

1+2+3+...+174

=(1+174)×174÷2

=175×87

=15225

4樓:

用(1+174)×174除以二

1+2+3+4一直加到100等於幾?

5樓:便民生活圈

結果等於:5050。

解題兩種方法:

一、(首尾相加) 乘以100再除以2:(1加100)乘以100,除以2,等於10100除以2等於5050。

二、開啟計算器一個一個往上加。

加法簡介:

加法(通常用加號「+」表示)是算術的四個基本操作之一,其餘的是減法,乘法和除法。 例如,在下面的**中,共有三個蘋果和兩個蘋果的組合,共計五個蘋果。 該觀察結果等同於數學表示式「3 + 2 = 5」,即「3加2等於5」。

除了計算水果,也可以計算其他物理物件。 使用系統泛化,也可以在更抽象的數量上定義加法,例如整數,有理數,實數和複數以及其他抽象物件,如向量和矩陣。

在算術中,已經設計了涉及分數和負數的加法規則。

加法有幾個重要的屬性。 它是可交換的,這意味著順序並不重要,它又是相互關聯的,這意味著當新增兩個以上的數字時,執行加法的順序並不重要。 重複加1與計數相同; 加0不改變結果。

加法還遵循相關操作(如減法和乘法)。

加法是最簡單的數字任務之一。 最基本的加法:1+1,可以由五個月的嬰兒,甚至其他動物物種進行計算。

在小學教育中,學生被教導在十進位制系統中進行數字的疊加計算,從一位的數字開始,逐步解決更難的數字計算。

6樓:唐同書是嫻

5050

這就是傳說中哪個偉人作的一道題,利用倒序相加!1加99,2加98....一直加到49加51剩下一個50共有

50個100.所以一共是5050

7樓:善素枝大衣

首尾相加,乘以尾數,之後在除以2。也就是[(1+100)*100]/2。答案是5050。其中的規律你套入公式就明白了

8樓:匿名使用者

1+2+3+……+100

=(1+100)×50

=5050

答:結果是5050

9樓:甲俊英

4950.一共有49個100。還剩一個50。加起來就等於4950。

10樓:無心

(首項 + 尾項)x 公差 ÷ 2

所以等於5050。

11樓:佘尋冬

5050首尾相加乘以尾數之後在除以2

1+2+3+4一直加到100等於多少

12樓:秋狸

5050。

解析:利用等差數列求和,直接用公式sn=na1+n(n-1)d/2,首項a1=1,公差d=1。

sn=na1+n(n-1)d/2

sn=(1+100)*(100/2)

sn=5050

等差數列的性質

1、若公差d>0,則為遞增等差數列;若公差d<0,則為遞減等差數列;若公差d=0,則為常數列。

2、有窮等差數列中,與首末兩端「等距離」的兩項和相等,並且等於首末兩項之和。

3、m,n∈n*,則am=an+(m-n)d。

4、若s,t,p,q∈n*,且s+t=p+q,則as+at=ap+aq,其中as,at,ap,aq是數列中的項,特別地,當s+t=2p時,有as+at=2ap。

此題也可以用高斯演算法求解,公式為:(首項+末項)*項數/2。

1+2+3+......+100

=(1+100)+(2+99)+……+(49+51)

=101+101+...+101(共有50對)

=101×50

=5050

13樓:洛綠魚浩淼

因為首尾相加=101

50×101=5050

所以=5050+1=5051

這個題目源於

高斯約翰·卡爾·弗里德里希·高斯(c.f.gauss,2023年4月30日-2023年2月23日),男,德國著名數學家、物理學家、天文學家、大地測量學家。

是近代數學奠基者之一,高斯被認為是歷史上最重要的數學家之一,並享有「數學王子」之稱。高斯和阿基米德、牛頓並列為世界三大數學家。一生成就極為豐碩,以他名字「高斯」命名的成果達110個,屬數學家中之最。

高斯在歷史上影響巨大,可以和阿基米德、牛頓、尤拉並列。高斯7歲那年開始上學。10歲的時候,他進入了學習數學的班級,這是一個首次創辦的班,孩子們在這之前都沒有聽說過算術這麼一門課程。

數學教師是布特納,他對高斯的成長也起了一定作用。一天,老師佈置了一道題,1+2+3······這樣從1一直加到100等於多少。高斯很快就算出了答案,起初高斯的老師布特納並不相信高斯算出了正確答案:

"你一定是算錯了,回去再算算。」高斯說出答案就是5050,高斯是這樣算的1+100=101,2+99=101······1加到100有50組這樣的數,所以50x101=5050。布特納對他刮目相看。

他特意從漢堡買了最好的算術書送給高斯,說:「你已經超過了我,我沒有什麼東西可以教你了。」接著,高斯與布特納的助手巴特爾斯建立了真誠的友誼,直到巴特爾斯逝世。

他們一起學習,互相幫助,高斯由此開始了真正的數學研究。

14樓:仇雅霜

1+2+3…+100 1+99 2+98… 50+100因為50不能湊整

100×49+150 因為有49堆個可以湊整的數4900+150

=5050

15樓:神丶雨祭丨

1+2+3+...+98+99+100

=(1+100)+(2+99)+(3+98)+...+(50+51) (共有50對)

=101×50

=5050

-----------------------------希望採納,你的支援我們的動力!

16樓:如夢隨行

1+2+3······這樣從1一直加到100等於5050

1+2+3++4....+100=(1+100)÷2×100=5050

17樓:

就是第二種方法啊!高斯想出來,其實這是高中課程的內容是,是等差數列前n項求和的知識!沒有別的高深和簡便的了!

18樓:督水荷隆夏

有時間按計算機

只要不按錯肯定是5050

還有一個方法

是數學家高斯想出來的

1+100=101

2+99=101

3+98=101

。。。以此類推

首項+末項=101

100個數裡面一共有50對這樣的數字

也就是101乘以50=5050

19樓:張祥戴映真

1+100=101

2+99=101

3+98=101

。。。以此類推

首項+末項=101

100個數裡面一共有50對這樣的數字

也就是101乘以50=5050

((n+1)*n)/2

=((100+1)*100)/2

=5050

沒有了,就這兩種

20樓:籍菲佴霜

樓主,做這種

1+2+3+4……+44+45……+99+100這種題可以記住一個公式:(首項+末項)×項數÷2=和(1+100)×100÷2=101×100÷2=101×50=5050

這種題其實很簡單,記住公式就可以了,望採納!純手打!

21樓:快樂無限

1+2+3+4+……+99+100

=(1+100)x100÷2

=5050

希望能幫到你!

22樓:小9小9樂

101*100/2=5050

23樓:蝴蝶飛好可憐

原式=(1+100)+(2+99)+(3+98)+……+(48+53)+(49+52)+(50+51)

=101*50=5050

24樓:匿名使用者

公式:1/[n*(n+1)]=1/n - 1/(n+1)原式變為:1/1*2+1/2*3+1/3*4+......+1/99*100

=(1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/99-1/100)

=1-1/100

=99/100

25樓:匿名使用者

這是調和級數是發散型的沒法算

euler(尤拉)在2023年,利用newton的成果,首先獲得了調和級數有限多項和的值。結果是:

1+1/2+1/3+1/4+...+1/n= ln(n+1)+r(r為常量)

他的證明是這樣的:

根據newton的冪級數有:

ln(1+1/x) = 1/x - 1/2x^2 + 1/3x^3 - ...

於是: 1/x = ln((x+1)/x) + 1/2x^2 - 1/3x^3 + ...

代入x=1,2,...,n,

就給出: 1/1 = ln(2) + 1/2 - 1/3 + 1/4 -1/5 + ... 1/2 = ln(3/2) + 1/2*4 - 1/3*8 + 1/4*16 - ...

...... 1/n = ln((n+1)/n) + 1/2n^2 - 1/3n^3 + ...

相加,就得到: 1+1/2+1/3+1/4+...1/n = ln(n+1) + 1/2*(1+1/4+1/9+...

+1/n^2) - 1/3*(1+1/8+1/27+...+1/n^3) + ...... 後面那一串和都是收斂的,

我們可以定義 1+1/2+1/3+1/4+...1/n = ln(n+1) + r

euler近似地計算了r的值,約為0.577218。這個數字就是後來稱作的尤拉常數。不過遺憾的是,我們對這個常量還知之甚少,連這個數是有理數還是無理數都還是個謎。

26樓:鳳舞雪飄

從1+2+3+四一直加到100,就用1+99,2加98一直加下去。也可以這樣用101×50。就是在英國著名的數學家高斯所做過的題目。

1+2+3+4一直加等於多少

27樓:

1+2+3+4一直加到174等於15225。 一、這道題用到了等差數列求和公式。 等差數列是常見數列的一種,可以用a、p表示。

如果一個數列從第二項起,每一項與它的前一項的差等於同一個常數,這個數列就叫做等差數列。這個常數叫做等差數列的公差,公差用字母d表示。例如:

1,2,3,4,5……n。等差數列的通項公式為:an=a1+(n-1)d。

前n項和公式為:sn=n*a1+n(n-1)d/2或sn=n(a1+an)/2。二、關於數列:

數列(sequence of number)是以正整數集(或它的有限子集)為定義域的函式,是一列有序的數。數列中的每一個數都叫做這個數列的項。排在第一位的數稱為這個數列的第1項(通常也叫做首項),排在第二位的數稱為這個數列的第2項……排在第n位的數稱為這個數列的第n項,通常用an表示。

1 2 3 4 5 6 7 8 9 10一直加到100等於多少怎麼算的

5050 等差數列公式n項和 首項 末項 項數 2 1 100 100 2 5050 因為1 100 2 99 3 98 50 51 101一共有50個101,所以總和 1 100 100 2 5050 1 100 2 99 3 98 4 97 最後 50 51 也就是最前面的加最後面的,依次相加得...

1 2 3 4 5一直加到1000等於多少

1 999 2 888 1000 1000 49 500 5400 答案不應定對,但過程就是這樣 等於500500 1000 500500我也不知道 1 2 3 4 5一直加到1000 或1 2 3 4 5 6一直加到500 等於多少 求簡便方法 很簡單,1000的演算法 1 999 2 998 3...

1 2 3一直加到100等於多少

回答您好,我是教育行業的景老師,擅長k12,職業培訓以及語言翻譯。稍等一下,我已經看到您的問題,正在整理資料以及答案,不要結束問答哦,問答結束之後麻煩您給我個贊 在下一定知無不言,言無不盡!你好,這道題沒有簡便運算方式哦 經計算機計算 1 2 1 3 1 4 1 5 1 6 1 7 1 99 1 1...