1樓:別¢給㈤談資格
任何一個形如x方+bx的二次式都可以通過加一次項係數的一般的平方的方法 配成一個二項式的完全平方 把這個方程歸結為能用直接開平方法解的方程 從而得解 這種方法叫配方法
配方法的理論依據是: 完全平方公式a方+/-2ab+b方=(a+/-b)方 任何一個一元二次方程都可以利用完全平方公式轉化成(x+m)方=n的形式 n≠0
2樓:天豪帥哥
每天做練習,不懂自己去問老師,最好自己琢磨
3樓:岑蕊牧秀雅
x²-4x-1=0
x²-4x+4-5=0
(x-2)^2=5
x-2=√5或x-2=-√5
x=2+√5或x=2-√5
x²-7=3x
x²-3x=7
x²-3x+(3/2)^2=7+(3/2)^2(x-3/2)^2=37/4
x²-2x=1/2
x²-2x+1=1/2+1
(x-1)^2=3/2
x-1=√6/2或x-1=-√6/2
x=1+√6/2或x=1-√6/2
三分之一x²-2x-2=0
x²-6x=6
x²-6x+9=6+9
(x-3)^2=15
x-3=√15或x-3=-√15
x=3+√15或x=3-√15
0.2x²-0.6x=1
x²-3x=5
x²-3x+(3/2)^2=5+(3/2)^2(x-3/2)^2=29/4
x-3/2=√29/2或x-3/2=-√29/2x=3/2+√29/2或x=3/2-√29/2
一元二次方程的全部詳細解法,舉例,原理.........
4樓:坐看雲起雨落
解一元二次方程的基本思想方法是通過「降次」將它化為兩個一元一次方程。一元二次方程有四種解法:
1、直接開平方法;
2、配方法;
3、公式法;
4、因式分解法。
1、直接開平方法:直接開平方法就是用直接開平方求解一元二次方程的方法。用直接開平方法解形如(x-m)^2;=n (n≥0)的 方程,其解為x=±√n+m .
2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)
先將常數c移到方程右邊:ax^2+bx=-c
將二次項係數化為1:x^2+b/ax=- c/a
方程左邊成為一個完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚²
當b²-4ac≥0時,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚²
∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a (這就是求根公式)
3.公式法:把一元二次方程化成一般形式,然後計算判別式△=b²-4ac的值,當b²-4ac≥0時,把各項係數a, b, c的值代入求根公式x=[-b±√(b²-4ac)]/(2a) , (b²-4ac≥0)就可得到方程的根。
4.因式分解法:把方程變形為一邊是零,把另一邊的二次三項式分解成兩個一次因式的積的形式,讓兩個一次因式分別等於零,得到兩個一元一次方程,解這兩個一元一次方程所得到的根,就是原方程的兩個根。這種解一元二次方程的方法叫做因式分解法。
小結: 一般解一元二次方程,最常用的方法還是因式分解法,在應用因式分解法時,一般要先將方程寫成一般形式,同時應使二次項係數化為正數。
直接開平方法是最基本的方法。
公式法和配方法是最重要的方法。公式法適用於任何一元二次方程(有人稱之為萬能法),在使用公式法時,一定要把原方程化成一般形式,以便確定係數,而且在用公式前應先計算判別式的值,以便判斷方程是否有解。
配方法是推導公式的工具,掌握公式法後就可以直接用公式法解一元二次方程了,所以一般不用配方法 解一元二次方程。但是,配方法在學習其他數學知識時有廣泛的應用,是初中要求掌握的三種重要的數學方法之一,一定要掌握好。(三種重要的數學方法:
換元法,配方法,待定係數法)。
只含有一個未知數(一元),並且未知數項的最高次數是2(二次)的整式方程叫做一元二次方程。一元二次方程經過整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次項,a是二次項係數;bx叫作一次項,b是一次項係數;c叫作常數項。
一元二次方程成立必須同時滿足三個條件:
①是整式方程,即等號兩邊都是整式,方程中如果有分母;且未知數在分母上,那麼這個方程就是分式方程,不是一元二次方程,方程中如果有根號,且未知數在根號內,那麼這個方程也不是一元二次方程(是無理方程)。
②只含有一個未知數;
③未知數項的最高次數是2。
5樓:千分一曉生
因式分解法:
x²-2x-15=0,
(x-5)(x+3)=0
∴x1=5, x2=-3
(原理:若a*b=0,則a、b必有一個是0)直接開平方法:
9x²=1
x²=1/9,
x1=1/3,x2=-1/3
(原理:平方根的求法)
配方法:
x²-2x=15
x²-2x+1=15+1
(x-1)²=16,
x-1=4或x-1=-4,
∴x1=5,x2=-3
(原理:直接開平方法)
公式法:x=[- b土根號(b²-4ac)]/2x²-2x-15=0
a=1,b=-2,c=-15,
b²-4ac=64>0
x=(2土根號64)/2
∴x1=5, x2=-3
(原理:配方法)
一元二次方程配方法怎麼配方?
6樓:假面
用配方法解一元二次方程的一般步驟:
1、把原方程化為的形式;
2、將常數項移到方程的右邊;方程兩邊同時除以二次項的係數,將二次項係數化為1;
3、方程兩邊同時加上一次項係數一半的平方;
4、再把方程左邊配成一個完全平方式,右邊化為一個常數;
5、若方程右邊是非負數,則兩邊直接開平方,求出方程的解;若右邊是一個負數,則判定此方程無實數解。
7樓:火星
1.轉化: 將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)化為一般形式 2.
移項: 常數項移到等式右邊 3.係數化1:
二次項係數化為1 4.配方: 等號左右兩邊同時加上一次項係數一半的平方 5.
求解: 用直接開平方法求解 整理 (即可得到原方程的根) 代數式表示方法:注(^2是平方的意思.
) ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n) 例:解方程2x^2+4=6x 1. 2x^2-6x+4=0 2.
x^2-3x+2=0 3. x^2-3x=-2 4. x^2-3x+2.
25=0.25 (+2.25:
加上3一半的平方,同時-2也要加上3一半的平方讓等式兩邊相等) 5. (x-1.5)^2=0.
25 (a^2+2b+1=0 即 (a+1)^2=0) 6. x-1.5=±0.
5 7. x1=2 x2=1 (一元二次方程通常有兩個解,x1 x2)
編輯本段二次函式配方法技巧
y=ax&sup要的一項,往往在解決方程,不等式,函式中需用,下面詳細說明: 首先,明確的是配方法就是將關於兩個數(或代數式,但這兩一定是平方式),寫成(a+b)平方的形式或(a-b)平方的形式: 將(a+b)平方的得 (a+b)^2=a^2+2ab+b^2 所以要配成(a+b)平方的形式就必須要有a^2,2ab,b^2 則選定你要配的物件後(就是a^2和b^2,這就是核心,一定要有這兩個物件,否則無法使用配方公式),就進行新增和去增,例如:
原式為a^2+ b^2 解: a^2+ b^2 = a^2+ b^2 +2ab-2ab = ( a^2+ b^2 +2ab)-2ab = (a+b)^2-2ab 再例: 原式為a^2+ 2b^2 解:
a^2+2b^2 = a^2+ b^2 + b^2 +2ab-2ab = ( a^2+ b^2 +2ab)-2ab+ b^2 = (a+b)^2-2ab+ b^2 這就是配方法了, 附註:a或b前若有係數,則看成a或b的一部分, 例如:4a^2看成(2a)^2 9b^2看成(a^29b^2)
8樓:匿名使用者
配方法:用配方法解方程ax2+bx+c=0 (a≠0)先將常數c移到方程右邊:ax2+bx=-c將二次項係數化為1:x2+x=-
方程兩邊分別加上一次項係數的一半的平方:x2+x+( )2=- +( )2
方程左邊成為一個完全平方式:(x+ )2=當b2-4ac≥0時,x+ =±
∴x=(這就是求根公式)
例2.用配方法解方程 3x2-4x-2=0解:將常數項移到方程右邊 3x2-4x=2將二次項係數化為1:x2-x=
方程兩邊都加上一次項係數一半的平方:x2-x+( )2= +( )2配方:(x-)2=
直接開平方得:x-=±
∴x=∴原方程的解為x1=,x2=
一元二次方程詳細的解法,越相信越好。
9樓:曾經的約定
首先當a不等於0時方程:ax^2+bx+c=0才是一元二次方程1.公式法:
δ=b²-4ac,δ<0時方程無解,δ≥0時x=【-b±根號下(b²-4ac)】÷2a(δ=0時x只有一個)2.配方法:可將方程化為[x-(-b/2a)]²=(b²-4ac)/4a²
可解出:x=【-b±根號下(b²-4ac)】÷2a(公式法就是由此得出的)
3.直接開平方法與配方法相似
4.因式分解法:核心當然是因式分解了看一下這個方程(ax+c)(bx+d)=0,得abx²+(ad+bc)+cd=0與一元二次方程ax^2+bx+c=0對比得a=ab,b=ad+bc,c=cd。
所謂因式分解也只不過是找到a,b,c,d這四個數而已
舉幾個例子吧
例1: x²-5x+6=0
解:(x-2)(x-3)=0,x1=2,x2=3例2: 3x²-17x+10=0
解: (3x-2)(x-5)=0,x1=2/3,x2=5因式分解法又名十字相乘法原因看下面就知道了abx²+(ad+bc)+cd=0axc
↖↗↙↘
bxd (a,b,c,d不一定都是正數)解方程時因選擇適當的方法
下面幾個練習題可以試試
1.x²-6x+9=0
2.4x²+4x+1=0
3.x²-12x+35=0
4.x²-x-6=0
5.4x²+12x+9=0
6.3x²-13x+12=0
10樓:zxj清歡
方法1:配方法(可解全部一元二次方程)
如:解方程:x^2-4x+3=0 把常數項移項得:
x^2-4x=-3 等式兩邊同時加1(構成完全平方式)得:x^2-4x+4=1 因式分解得:(x-2)^2=1 解得:
x1=3,x2=1
小口訣: 二次係數化為一 常數要往右邊移 一次係數一半方 兩邊加上最相當
方法2:公式法(可解全部一元二次方程)
首先要通過δ=b^2-4ac的根的判別式來判斷一元二次方程有幾個根 1.當δ=b^2-4ac0時 x有兩個不相同的實數根
當判斷完成後,若方程有根可根屬於第2、3兩種情況方程有根則可根據公式:x=/2a 來求得方程的根
3.因式分解法(可解部分一元二次方程)
(因式分解法又分「提公因式法」、「公式法(又分「平方差公式」和「完全平方公式」兩種)」和「十字相乘法」. 如:解方程:
x^2+2x+1=0 利用完全平方公式因式分解得:(x+1﹚^2=0 解得:x1=x2=-1
4.直接開平方法
5.代數法。(可解全部一元二次方程) ax^2+bx+c=0 同時除以a,可變為x^2+bx/a+c/a=0
設:x=y-b/2 方程就變成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 x錯,應為 (y^2+b^2/4-by)除以(by-b^2/2)+c=0
再變成:y^2+(b^22*3)/4+c=0 x/y^2-b^2/4+c=0 y=±√[(b^2*3)/4+c] x/y=±√[(b^2)/4+c]
一元二次方程配方法,用配方法解一元二次方程的步驟是什麼?
一元二次方程配問題你只要在保證x 2前的係數為1的前提下,在算式後面加上x係數n 在這裡方便回答用n代替 除以2再平方,再減去n除以2再平方.例如這題f x x2 2x 1 變為f x x 2 2x 1 1 1 x 1 2 2 就可以看出對稱軸為 1 0,1 上最大f 1 2,最小f 0 1 2,1...
一元二次方程各種題型的解法,一元二次方程的全部詳細解法,舉例,原理
1.配方法 把式子寫出完全平方式子,然後開方2.公式法3.分解因式法 一元二次方程的全部詳細解法,舉例,原理.解一元二次方程的基本思想方法是通過 降次 將它化為兩個一元一次方程。一元二次方程有四種解法 1 直接開平方法 2 配方法 3 公式法 4 因式分解法。1 直接開平方法 直接開平方法就是用直接...
初一元二次方程,初二 一元二次方程
2x kx 4 x 6 0 2kx 2 8x x 2 6 0 2k 1 x 2 8x 6 0 方程沒有實數根 0 即 b 2 4ac 64 4 6 2k 1 064 48k 24 0 k 11 6 將x 1代入3x 2x m 0得 3 2 m 0 m 5 設雞場長為n米,則寬為 35 n 米 2,列...