1樓:我愛學習
硬解定理公式:
圓錐曲線硬解定理,又稱圓錐曲線聯立公式,其實是一套求解橢圓(或雙曲線。
與直線相交時,聯立方程求判別式、韋達定理。
與相交弦長的結果公式,常應用於解析幾何。
2樓:帳號已登出
硬解定理用ax+by+c=0和x^2/a^2+y^/b2=1聯立得出來的。
在將圓錐曲線。
的方程與直線方程。
聯立求解時人們發現了可消項的存在。但其一般化的推導結果不具有清拆普適性,且一直無法用乙個簡潔的形式表示。
由cgy(2010)以橢圓曲沒正空線。
推導,重新排列分組形式,並引入ε,從而得出了較為簡潔的表示形式。後再由cgy成功引入弦長。
計算公式,並將適用範圍擴大到對y值求解與對x的求解,從而奠定了cgy-eh定理強大的通用性與普適性。
3樓:生活導師小幸子
根據您提到的 "硬解定理",可能是指肢橋數學中的 "空圓根式求解定理" 或 "根式解法"(radical solution theorem 或 radical method)。
根式求解定理是指,對於乙個一元方程,如果它可以通過有限次的根式運算(包括開方、平方等)和基本代數運算(加法、減法、乘法、除法)來表示其解,則稱這個方程是可以通過根式求解的。
然而,並不存在乙個通用的 "硬解定理" 公式來解決所有方程,因為不同型別的歷虧猛方程需要不同的解法和技巧。常見的根式求解方法包括二次方程的求根公式、三次方程和四次方程的特殊解法,以及一些特定形式的方程的解法。
舉例而言,二次方程的求根公式為:
x = b ± b^2 - 4ac)) 2a)
其中,對於方程 ax^2 + bx + c = 0,x 是方程的解,a、b 和 c 是方程的係數。
對於高階方程或更復雜的方程,需要根據具體情況使用不同的解法和技巧,例如因式分解、配方法、代數恆等式等。
總而言之,針對具體的方程,需要應用適當的數學方法和技巧來求解,並沒有乙個通用的 "硬解定理" 公式適用於所有方程。
4樓:文曲
硬解定理(hardy's inequality)是一種數學不等式,最早由英國數學家 hardy於1904年提出。該不等式孫旅敬在分析和數學物理領域有廣泛應用。
硬解定理的一般形式是:
u(x)|^p dx ≤ c ∫|u'(x)|^p dx
其中,u(x)是定義在區間[a, b]上的函式,u'(x)是它的導數,p是乙個實數,且p大於是乙個常數,其值取決於[a, b]的長度和p。
這個不等式的含義是對於任意滿足一定條件的函式u(x),它的l^p範數(p範數, |u|^p 的積分)在一定條件下是有界的,且與它的導數的l^p範數有關。這對於研究函式的平滑性、性質和收斂性等問題具有重要意義。
需要注意的是,硬解定理的形式和具體條件可以在不同鎮旦的文獻和應用中有所變化。這只是則慎乙個一般形式的表示,實際中可能會有更多的限制和修正。
硬解定理是什麼呢?
5樓:幻想家愛休閒
圓錐曲線硬解定理,又稱圓錐曲線聯立公式,其實是一套求解橢圓(或雙曲線)與直線相交時,聯立方程求判別式、韋達定理與相交弦長的結果公式,常應用於解析幾何。
圓錐曲線,是襲橘由一平面截二次錐面得到的曲線。圓錐曲線包括橢圓(圓慧鋒為橢圓的特例)、拋物線。
雙曲線。起源於2000多年前的古希臘。
數學家最先開始研究圓錐曲線。
圓錐曲線(二次曲線)的(不完整)統一定拍碧團義:到平面內一定點的距離r與到定直線的距離d之比是常數e=r/d的點的軌跡叫做圓錐曲線。其中當e>1時為雙曲線,當e=1時為拋物線,當0定點叫做該圓錐曲線的焦點,定直線叫做(該焦點相應的)準線,e叫做離心率。
6樓:我愛學習
硬解定理公式:
圓錐曲線硬解定理,又稱圓錐曲線聯立公式,其實是一套求解橢圓(或雙曲線)與直線相交談圓虛時,聯立方程求判別式、韋達定理與相交弦長的結果公式,常應用於解析幾何。
硬解定理是怎樣得來的?
7樓:帳號已登出
硬解定理用ax+by+c=0和x^2/a^2+y^/b2=1聯立得出來的。
在將圓錐曲線的方程與直線方程聯立求解時人們發現了可消項的存枯瞎在。但其一般化的推導結果不具有普適性,且一直無法用乙個簡潔的形式表示。
由cgy(2010)以橢圓曲線推導,重新排列分組形式,並引入ε,從而得出了較為簡潔的表示形式。後再由cgy成功引入弦長計算公式,並將適用範圍擴大到對y值求解與對x的求解,沒正空從而奠定了cgy-eh定理強大的通用性與普適性。
硬解的定理是什麼?
8樓:網友
圓錐曲線硬解定理,又稱圓錐曲線聯立公式,其實是一套求解橢圓(或雙曲橋態線)與直線相交時,聯立方程求判別式、韋達定理與相交弦長的結果公式,常應用於解析餘轎幾何。
簡介
硬解定理的利弊的話,那麼在這裡頭首先定理是通過數學推匯出來的,那麼定理在使用過程當中呢必須符合他的推理過程和推理條件的,所以應豎消肆該要注意看他的條件,應用範圍。
圓錐曲線硬解定理其是一套求解橢圓\雙曲線與直線相交時∆、 x1+x2 、x1* x2 及相交弦長的簡便演算法。常應用於解析幾何。
勾股定理的公式是什麼,什麼是勾股定理,計算公式是什麼?
勾股定理 在任何一個直角三角形中,兩條直角邊的平方之和一定等於斜邊的平方.這個定理在中國又稱為 商高定理 在外國稱為 畢達哥拉斯定理 勾股定理 又稱商高定理,畢達哥拉斯定理 是一個基本的幾何定理,早在中國商代就由商高發現.據說畢達高拉斯發現了這個定後,即斬了百頭牛作慶祝,因此又稱 百牛定理 勾股定理...
什麼是夏農定理,夏農定理是什麼??
夏農定理給出了通道資訊傳送速率的上限 位元每秒 和通道訊雜比及頻寬的關係。夏農定理可以解釋現代各種無線制式由於頻寬不同,所支援的單載波最大吞吐量的不同。在有隨機熱噪聲的通道上傳輸資料訊號時,通道容量rmax與通道頻寬w,訊雜比s n關係為 rmax w log2 1 s n 注意這裡的log2是以2...
什么是奧肯定理,什麼是奧肯定理
名詞解釋 美國著名的經濟學家阿瑟 奧肯發現了週期波動中經濟增長率和失業率之間的經驗關係,即當實際gdp增長相對於潛在gdp增長 美國一般將之定義為3 下降2 時,失業率上升大約 1 當實際gdp增長相對於潛在gdp增長上升2 時,失業率下降大約 1 這條經驗法則以其發現者為名,稱之為奧肯定理。潛在g...