必修1包括函式的週期性和對稱性嗎

2021-03-03 21:18:12 字數 5782 閱讀 6166

1樓:滿意請採納喲

函式週期性用減法,函式對稱性用加法。

如:1、函式f(x)滿足f(x+a)=f(x+b),則函式f(x)的週期是t=|(x+a)-(x+b)|=|a-b|

2、函式f(x)滿足f(x+a)=f(b-x),則函式f(x)的對稱軸是x=[(x+a)+(b-x)]/2=(a+b)/2

2樓:匡志兵

包括的。週期性的是在必修一函式的性質那一章講到。函式的性質包括:

定義域,值域,單調性,奇偶性,對稱性和週期性。會有定義的。但必修一函式的性質考察的時候,週期性的考察比較少,一般考察值域,單調性,奇偶性等。

週期性和對稱性的應用一般在後面的三角函式中運用的比較多。必修一隻是講一些週期性的基本定義和簡單應用。

3樓:匿名使用者

包括,而且高數競賽要學

高等數學中的函式如何學習

4樓:匿名使用者

要學好高等數

學的函式,首先了解高等數學的特點。高等數學有三個顯著的特點:高度的抽象性;嚴謹的邏輯性;廣泛的應用性。

( 1 )高度的抽象性

數學的抽象性在簡單的計算中就已經表現出來。我們運用抽象的數字,卻不是每次都把它們同具體的物件聯絡起來。在數學的抽象中只留下量的關係和空間形式,而捨棄了其他一切。

它的抽象程度大大超過了自然科學中一般的抽象。

( 2 )嚴謹的邏輯性

數學中的每一個定理,不論驗證了多少例項,只有當它從邏輯上被嚴格地證明了的時候,才能在數學中成立。在數學中要證明一個定理,必須是從條件和已有的數學公式出發,用嚴謹的邏輯推理方法匯出結論。

( 3 )廣泛的應用性

高等數學具有廣泛的應用性。例如,掌握了導數概念及其運演算法則,就可以用它來刻畫和計算曲線的切線斜率、曲線的曲率等等幾何量;就可以用它來刻畫和計算速度、加速度、密度等等物理量;就可以用它來刻畫和計算產品產量的增長率、成本的下降率等等經濟量; …… 。掌握了定積分概念及其運演算法則,就可以用它來刻畫和計算曲線的弧長、不規則圖形的面積、不規則立體的體積等等幾何量;就可以用它來刻畫和計算變速運動的物體的行程、變力所做的功、物體的重心等等物理量;就可以用它來刻畫和計算總產量、總成本等等經濟量。

高等數學既為其它學科提供了便利的計算工具和數學方法,也是學習近代數學所必備的數學基礎。瞭解了這些就能學好高等數學的函式了。

5樓:匿名使用者

函式考察的題目有以下幾點:

1、定義域

2、值域

3、最值(最大最小)

4、圖象對稱

5、交點

6、平移

而最難的屬於後面3個,因此學習高中函式一定要掌握數學的重要思想,那就是數形結合,幾個典型的函式的圖象一定要牢牢掌握,對於快速而準確的解決問題有非常大的幫助,遇到什麼難題,我們可以共同**一下。

6樓:沙漠射手

我覺得數學學習沒有什麼特別好的拌飯 就是多做題 題做多了 自然就會總結出規律

在學高等數學之前,要學習多少種函式

7樓:我愛文文

正比例函式,一次函式,反比例函式,二次函式,銳角三角函式,這是讀高中前所學的所有函式。

8樓:匿名使用者

加減乘除,乘方開方,對數,指數,冪,極限,導數,微分積分,好像高等數學也就只涉及到這幾種運算了

9樓:藍翼臣

高等數學其實不難

我現在就在自學

只要你有毅力堅持

完全不需要什麼函式

有不懂的再去看那函式的介紹

我現在初三,學著不很難,

你也學高數啊,呵呵,哥哥還是弟弟...?

10樓:36寸液晶

要學習高中課本上的一次函式、二次函式、三角函式、反三角函式、指數函式、對數函式。

高等數學都學什麼?

11樓:demon陌

高等數學主要內容包括:極限、微積分、空間解析幾何與向量代數、級數、常微分方程。

指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。

廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。

通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。

12樓:愛要一心

這是目錄:

一、函式 極限 連續

二、一元函式微分學

三、一元函式積分學

四、微分方程初步

五、向量代數 空間解析幾何

六、多元函式微分學

七、多元函式積分學(包括曲線積分、曲面積分)八、無窮級數

我剛剛上完大一,高數主要就是學微積分,因為大學裡的其他學科很多都要用到微積分,所以要會算,那些微積分的公式都要很熟悉的。 先是學導數 ,微分就是在式子後面乘一個dx,而積分就是微分的逆運算。

13樓:匿名使用者

一、函式 極限 連續

二、一元函式微分學

三、一元函式積分學

四、微分方程初步

五、向量代數 空間解析幾何

六、多元函式微分學

七、多元函式積分學(包括曲線積分、曲面積分)八、無窮級數

它的資料和講義,網上有很多。

14樓:匿名使用者

主要就是定積分還有微積分方面的知識

15樓:天涯客

函式,極限,連續

一元函式微分

一元函式積分

多元函式微分

多元函式積分

常微分方程

學習高等數學需要什麼高中基礎?

16樓:大大的

導數和函式、複變函式與積分、概率論、線性代數。

導數和函式要學好,這部分到大學還會進一步學習,大學微積分的學習,跟高中聯絡最緊密的就是函式導數和極限部分,這部分應該學好,空間幾何也用到一些。

複變函式與積分的學習,與高中的複數有一點關係,高中學的是基礎定義和部分應用,到大學會把微積分聯絡在一起深入學習,所以,學好複數部分對以後更好的學習有不少幫助。

概率論的學習,不再像高中是學習排和組合,當然學好這部分的概率和期望對以後理解很有幫助,概率論更多的是學習其他概率分佈模型。

線性代數的學習,是一門工程數學,解方程n元一次組,n維相量、矩陣等等,實際中應用廣泛,好好理解下相量空間,這門學科跟以前聯絡不多,好好學一定會學好的。

指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。

通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。

主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。工科、理科研究生考試的基礎科目。

17樓:匿名使用者

基本不等式知識,函式知識,三角函式公式等等,說實話高等數學和高中數學差別很大,高中的知識也基本難以運用到高等數學上,基本上是不需要什麼基礎的,進入大學學高數大家相當於都是零基礎開始

18樓:匿名使用者

三角函式、極限、導數

我覺得高數上課好好聽,高中基礎都是浮雲,加油

19樓:匿名使用者

函式的概念 ---> 高等數學主要講函式的微積分;

三角函式的相關公式 ---> 做定積分的時候需要一些三角函式代換;

集合的概念 ---> 多元函式微積分會用到一點;

數列的基本概念 ---> 學習數列極限,收斂性會用到;

都是高中數學中的一些基本概念。

20樓:榮山楊帆

學高數不需要什麼基礎啊,能考上說明基礎都行的,邊學邊補基礎完全沒問題的,我教的學生基本都是高中基礎很差,但是學高數也不會怎麼樣

21樓:幸運的

不需要高中什麼基礎了,如果要說高等數學和高中數學的聯絡的話,也只有微積分部分了。

不過就算高中不怎麼懂導數和定積分這些微積分內容,也可以直接學高等數學了,因為高等數學主要就是講微積分,並且一般高等數學教材都是從頭開始講的,相當於重新學。

22樓:匿名使用者

高中的函式、三角函式、對數、指數等基本函式

23樓:袁總大俠

高中的基本都需要啊,這無分專業,工科學的都一樣。尤其用到三角函式、導數的知識。

24樓:蘇子矝

買一本少學時的高等數學,應該是第四版,你高中數學只要沒掛科就沒什麼問題了,會求導,會高次方程組求解,會簡單的幾何知識,剩下的就是你的耐心和刷題的數目了。基礎好可以買新版的書。

25樓:匿名使用者

基礎知識儘量都學紮實的好。主要需要以下基礎:

1、導數和函式、複變函式與積分。

1、導數和函式要學好,這部分到大學還會進一步學習,大學微積分的學習,跟高中聯絡最緊密的就是函式導數和極限部分,這部分應該學好,空間幾何也用到一些。

2、複變函式與積分的學習,與高中的複數有一點關係,高中學的是基礎定義和部分應用,到大學會把微積分聯絡在一起深入學習,所以,學好複數部分對以後更好的學習有不少幫助。

高等數學指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。

廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。

通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。

26樓:我是一頭豬

數學,重要的是思想。

然而,高中數學給予了我們必要的初等數學的知識,如導數,將來發展極限

如將來的空間解析幾何

哪怕是最簡單的集合,將來也為數論做了一定的基礎。

高中數學書上公式所給的推導充滿了數學思想,很重要。

大學數學,或者叫高數,離不開最基礎的。

27樓:手機使用者

基礎知識儘量都學紮實的好。

⒈導數和函式要學好,這部分到大學還會進一步學習,大學微積分的學習,跟高中聯絡最緊密的就是函式導數和極限部分,這部分應該學好,空間幾何也用到一些。

⒉複變函式與積分的學習,與高中的複數有一點關係,高中學的是基礎定義和部分應用,到大學會把微積分聯絡在一起深入學習,所以,學好複數部分對以後更好的學習有不少幫助。

⒊概率論的學習,不再像高中是學習排和組合,當然學好這部分的概率和期望對以後理解很有幫助,概率論更多的是學習其他概率分佈模型。

⒋線性代數的學習,是一門工程數學,解方程n元一次組,n維相量、矩陣等等,實際中應用廣泛,好好理解下相量空間,這門學科跟以前聯絡不多,好好學一定會學好的。

總之,好學基礎知識,對你的深造學習很有幫助;專業不同,可能學的學科數學也有少許不同,不過不管怎樣,學好基礎知識不是件壞事,更多的體驗還要等你到了大學才能更好地感受。呵呵,希望對你有所幫助。

28樓:偉大的宇宙精神

我認為,學習高等數學(上下冊)所需要的最低高中數學基礎是:必修

1全部,必修2全部,必修4的三角函式和向量部分,必修5的數列部分,選修2-1的圓錐曲線和空間向量部分,選修2-2的複數部分,選修2-3的排列與組合部分,選修4-4全部。

教育公共基礎知識2019包括哪些

由於各地市 區 縣出題範圍和內容比較靈活,所以考查的內容不太固定,但是綜合各地考試真題,可以發現多數地區教師公開招聘考試筆試主要考查兩個部分,即教育理論綜合知識 公共知識 和專業知識,教育理論綜合知識 公共知識 部分包括教育學 心理學和教育心理學的一些理論,以及一些相關的其中教育理論綜合知識教育法律...

詳細介紹下這款手機 索愛w908 包括厚度,價格,價效比等)

索尼愛立信w908與我們當前可以買到的w580一樣採用了滑蓋的機身設計,身為3g網路的walkman 手機w908的機身僅僅是12.5毫米的厚度,99.5 50 12.5mm的三圍體積搭配上86克的機身重量,w908完全擺脫了3g網路在體積以及重量方面的限制。紅色的索尼愛立信w908看上去非常的搶眼...

誰給下2023年包括以前年度完結的,文筆非小白,女主

1.唯一的小宇 是講一對青梅竹馬的,很輕鬆,小清新 2.何處錦繡不灰堆 聰明人喜歡猜心,卻不知道猜來猜去不是傷了別人的心,就是丟了自己的心。對於女主,你要不就愛她,要不就恨她,絕對不會只喜歡她。據說愛這個東西有一個最大的敵人,那就是 聰明 3.竹馬翻譯官 也是一對青梅竹馬 重生之黑道女神 重生之女王...