1樓:廬陽高中夏育傳
f(x)={x^2 (x≥0)` ={x-1 (x<0)f(x)是r上的增函式,但函式f(x)在x=0處不可導,談不上f'(x)≥0
如果是:f(x)是r上的連續單調增函式,則f'(x)≥0;為真命題,還有一個問題,也是易錯題
如果f(x)定義在r上,對任意的x∈r,都有f'(x)≥0,則f(x)不一定是單調增函式,如:
f(x)=4
f'(x)=0≥0,但f(x)不是r上的增函式,如果加上f'(x)≥0,且f'(x)不恆為零,則該命題為真命題;
函式數學?
2樓:匿名使用者
第1題f負根號2=f根號直接代入解析式去計算,第2題你先計算一下f負x加fx,它應該是一個定值,然後這個記憶就很容易解決了。
3樓:匿名使用者
^10.
∵f(x)為偶函式
∴f(-√2)=f(√2)=log₂√2=1/211.∵f(x)=x^5+ax^3+bx-8∴f(-x)=-x^5-ax^3-bx-8∴f(x)+f(-x)=x^5+ax^3+bx-8-x^5-ax^3-bx-8=-16
∴f(2)+f(-2)=-16
f(2)=-16-f(-2)=-16-10=-26
數學函式?
4樓:匿名使用者
公式不對吧,應該是左邊是2倍吧。二倍角公式
如何學好高中數學函式?
5樓:匿名使用者
數學必修一還只是高中課程的開始,所以不會太難,但是基礎要打好。
比如第一章:集合與函式概念。這一部分概念的記憶比較重要,而考試的時候很容易因為概念模糊而失分,所以上課的時候一定要認真聽講。
老師講課講得快也不代表講得不好,反而可以提高學生的思維速度。
第二章:基本初等函式。第三章:函式的應用。
函式是高中階段非常關鍵的一個知識點,什麼單調性、最值、週期性、對稱性都會在後面的學習中有廣泛的應用。建議函式這一章多做一點練習,一邊練習一邊歸納。想要知道一道題該用什麼方法做這是問不出來的,題目做多了自然而然就成了自己的經驗,看到題目就會非常自然的做出來啦。
不做數學題就想學好數學是不可能的,而學數學也不能急功近利。一邊練習的同時一邊歸納做題的方法,數學成績自然而然就會好起來啦~ 還有,自信也是非常重要的~
哈哈lz,其實我是高三的,這只是我學了3年後的一點點小心得,希望對你有用,加油!~
6樓:何秋光學前數學
一、教給學生閱讀課本的方法
1.對於識字不多,思考能力有限的低年級的學生來說,應採取在老師指導下講解和閱讀相結合的辦法。如對剛入學的小朋友,首先要幫助他們初步瞭解數學課的特點,知道數學課要學習哪些知識,看數學課本的插圖時要看清、數準圖上各種東西的個數。
接著教他們學會有順序地閱讀教科書,即要從上到下,從左往右地看;教學10以內數的認知看主題圖時,要學會先整體後部分地看。又如,低年級教材中的知識是用各種圖示表示的,教師要把指導重點放在幫助學生掌握看圖方法上,努力使他們做到四會:一要會看例題插圖,能比較準確地進述圖意;二要會看標有思維過程的算式,看懂計算方法;三要會看應用題的圖示,能根據圖示理解題意,搞清數量之間的關係、思考解答方法;四要會看多種練習形式,懂得練習題的要求。
2.對於已積累了一定的知識和具有一定能力的中年級學生來說,教師可採用半工半讀半扶半放的方式進行培養。如教師既可先講後讀,具體指導學生閱讀課本的方法;也可騙制閱讀提綱,讓學生帶著提綱閱讀課本,尋找答案,幫助學生理解教材。
3.對於具有一定自學能力的高年級學生來說,則可採取課前預習、啟發引導、獨立閱讀的辦法。如指導預習時,教師對學生要有明確的要求,要有預習的範圍,要提出必要的思考題或實驗作業,要檢查預習情況。
課堂上教師可以放手讓學生去讀讀、講講、論論、練練的方式進行自學與討論,要求他們在把握知識的基礎上理清知識體系,進一步提高認知水平。
二、教給學生科學的記憶方法
1.理解記憶法。就是通過學生的積極思維,依據事物的內在聯絡,在理解的基礎上去記憶的方法。
如:什麼叫梯形。首先讓學生通過認真觀察,理解「只有一組對邊」是什麼意思,若把「只」字去掉又會怎樣。
通過積極思考,學生認知到「只有一組對邊平行」就是四條邊中相對的兩條邊為一組,其中一組平行,另一組不平行。這樣學生在理解的基礎上記憶梯形這個概念就容易了。
2.規律記憶法。就是尋找事物內在規律,抓住其規律幫助記憶的方法。
數學知識是有規律的,只要引導學生掌握其規律,就可以進行有效記憶。例如:記憶長度、面積、體積單位進率。
因為長度單位相鄰之間的進率是10,面積單位相鄰之間的進率是100,體積單位之間的進率是1000。掌握了這個規律記憶就比較容易。
3.形象記憶法。就是藉助事物的形象或表象進行記憶的方法。
小學生的思維以形象思維為主,逐步向抽象思維發展。在教學中,教師講課時要注意生動、形象,以喚醒學生對事物的表象,進行形象記憶。例如,一年級數的認知教學時,老師把數與某些實物形象記憶:
把「2」比作小鴨子、「3」比作耳朵等。
4.比較記憶法。這是把相似、相近的數學材科學的進行對比,把握它們的相同點與不同點,加強記憶的一種方法。例如,整除與除盡,質數與互質數等,在學生理解後,引導學生進行比較記憶。
5.類比聯想記憶法。是指對某一事物的感知或回憶引起性質上相似的事物的回憶的方法。
例如,讓學生記憶分數的基本性質時,引導學生聯想除法的商不變性質和除法與分數的關係,那麼分數的基本性質就不難記憶了。
6.歸納記憶法。是把具有內在聯絡的知識集中起來,組成系統,形成網路的記憶方法。
你如,有關面積知識,學生是跨越幾個年級才全部學完。這些圖形有特徵上的不同,也有公式上的區別。零敲碎打獲得的知識,必須給予系統上的整理,才能保證這部分知識本身固有的整體性。
可以通過下面網狀圖形,把這些圖形的內在聯絡揭示出來,這樣有利於學生進行系統記憶。
三、教給學生複習的方法
複習就是把學過的數學知識再進行學習,以達到深入理解、融會貫通、精練概括、牢固掌握的目的。學生對數學知識的學習,是包括一堂堂數學課累積起來的,因而所獲得的知識往往是零碎的和片面的,時間一長,就會出現知識鏈條的斷裂現象。基於這一點,單元複習和總複習都是很重要的。
小學數學教學中,複習的方法主要有以下幾點:
1.概括複習。學生每學完一個小單元或一個大單元,就組織他們對於知識體系進行一次再概括,理出綱目,記住輪廓,列出重點,幫助他們掌握單元的主要內容。
2.分類複習。引導學生把學過的知識和技能進行分類整理、分類比較,以加強知識的內在聯絡和知識的深度、廣度,幫助學生加深理解與記憶。
3.區別複習。把學過的相似的概念、規則等,如以區別、比較,掌握知識的特徵。
總之,一方面,複習要在理解教材的基礎上,溝通知識間的內在聯絡,找出重點、關鍵,然後提煉概況,組成一個知識系統,從而形成或發展擴大認知結構;另一方面,通過複習,不斷地對知識本身或從數學思想方法角度進行提高與精煉,是有利於能力的發展與提高的。
四、教會學生整理與歸納的方法
整理知識是一項主要的學習方法。小學數學知識,由於學生認識能力的原因,往往分若干層次逐漸完成。一節課後、一個單元后或一個學期後,需要對所學知識進行整理與歸納,形成良好的認知結構,便於記憶和運用。
1.把知識串成「塊」,形成知識網路。
小學幾何初步知識涉及到五線(直線、線段、射線、垂線、平行線)、六角(銳角、直角、鈍角、平角、周角、圓心角)、七形(長方形、正方形、三角形、平行四邊形、梯形、圓形、扇形)五體(長方體、正方體等)教完幾何後,把七種平面圖形組成一個知識網路。
2.系統整理成表,便於記憶運用。按照數學知識的科學體系和小學生的認識規律,小學幾何初步知識分散在小學各冊實現教材中。
在總複習中,教師應避免羅列和重複以往知識,而應恢復幾何初步知識原有的知識體系和法則,按點、線(角)、面、體四大部分知識認真系統地歸納整理成表,使之在學生頭腦中條理化、系統化、網路化,便於記憶與運用。
五、教給學生知識遷移的方法
遷移是指已獲得知識、技能乃至方法和態度對學習新知識新技能的影響。先前學習對後繼學習起積極、促進作用的,糾正遷移,反之糾負遷移。人們在解決新課題時,總是利用已有的知識技能去尋找解決問題的方法。
數學是一門邏輯性、嚴密性極強的學科,它的知識系統性強,前面的知識是後面的基礎,後面的知識是前面知識的延伸與發展。所以教師必須緊緊抓住前後知識的內在聯絡,教給學生知識遷移的方法。
7樓:峰何以笙簫默
一、學數學就像玩遊戲,想玩好遊戲,當然先要熟悉遊戲規則。
想學好函式,第一要牢固掌握基本定義及對應的影象特徵,如定義域,值域,奇偶性,單調性,週期性,對稱軸等。很多同學都進入一個學習函式的誤區,認為只要掌握好的做題方法就能學好數學,其實應該首先應當掌握最基本的定義,在此基礎上才能學好做題的方法,所有的做題方法要成立歸根結底都必須從基本定義出發,最好掌握這些定義和性質的代數表達以及影象特徵。
二、牢記幾種基本初等函式及其相關性質、圖象、變換。
中學就那麼幾種基本初等函式:一次函式(直線方程)、二次函式、反比例函式、指數函式、對數函式、正弦餘弦函式、正切餘切函式,所有的函式題都是圍繞這些函式來出的,只是形式不同而已,最終都能靠基本知識解決。還有三種函式,儘管課本上沒有,但是在高考以及自主招生考試中都經常出現的對勾函式:
y=ax+b/x,含有絕對值的函式,三次函式。這些函式的定義域、值域、單調性、奇偶性等性質和影象等各方面的特徵都要好好研究。
三、影象是函式之魂!要想學好做好函式題,必須充分關注函式圖象問題。
翻閱歷年高考函式題,有一個算一個,幾乎百分之八十的函式問題都與影象有關。這就要求童鞋們在學習函式時多多關注函式的影象,要會作圖、會看圖、會用圖!多多關注函式圖象的平移、放縮、翻轉、旋轉、複合與疊加等問題。
四、多做題,多向老師請教,多總結吧。
多做題不是指題海戰術,而是根據自己的情況,做適當的題目;重點要落在多總結上,總結什麼呢?總結題型,總結方法,總結錯題,總結思路,總結知識等!
舉例說明連續函式的導數不一定連續
函式f x 當x不等於0時,f x x 2sin 1 x 當x 0時,f x 0.這個函式在 可導.導數是f x 當x不等於0時,f x 2xsin 1 x cos 1 x 當x 0時,f x lim lim xsin 1 x x 0 0.所以在x 0這一點處,f 0 存在但f x 不連續.f x ...
連續函式處處可導,而它的導函式不一定連續,能不能舉個例子
考慮分段函式 f x 當x 0時,函式值為0 當x 0時,函式f x x 2 sin 1 x 其導數 g x 顯然x 0時,g x f x 2xsin 1 x cos 1 x g 0 f 0 0 利用定義可以求解,這裡過程略 但是g x 在x 0處顯然不連續 按照定義判斷吧,x 0處的左右極限均不存...
捨得為你花錢的男人不一定愛你,不捨的為你花錢的男人一定不愛你,這樣的話讓我好傷心,我男朋友就是小氣
分吧 否則以後生活就和現在這樣 只要他願意為這個家付出就是好男人,如果對你小氣,有可能是他的習慣,是他的本性,對誰都這樣,但是不代表不愛你!採納 有可能不是他小氣,消費水平和消費觀念不一樣的人在一起很難開心。如果他沒錢,趕緊離開他吧,人家本來就沒錢還老花人家的錢不好的。太極端了!捨得為女人花錢的男人...