微積分研究的主要內容是什麼,該怎麼理解它的用途

2021-03-03 20:31:29 字數 5338 閱讀 2485

1樓:匿名使用者

微積分(calculus)是高等數學中研究函式的微分、積分以及有關概念和應用的數學分支。

它是數學的一個基礎學科。內容主要包括極限、微分學、積分學及其應用。微分學包括求導數的運算,是一套關於變化率的理論。

它使得函式、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。

微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們可以以兩者中任意一者為起點來討論微積分學,但是在教學中,微分學一般會先被引入。

微積分學是微分學和積分學的總稱。它是一種數學思想,『無限細分』就是微分,『無限求和』就是積分。十七世紀後半葉,牛頓和萊布尼茨完成了許多數學家都參加過準備的工作,分別獨立地建立了微積分學。

他們建立微積分的出發點是直觀的無窮小量,但是理論基礎是不牢固的。因為「無限」的概念是無法用已經擁有的代數公式進行演算,所以,直到十九世紀,柯西和維爾斯特拉斯建立了極限理論,康托爾等建立了嚴格的實數理論,這門學科才得以嚴密化。

學習微積分學,首要的一步就是要理解到,「極限」引入的必要性:因為,代數是人們已經熟悉的概念,但是,代數無法處理「無限」的概念。所以,必須要利用代數處理代表無限的量,這時就精心構造了「極限」的概念。

在「極限」的定義中,我們可以知道,這個概念繞過了用一個數除以0的麻煩,相反引入了一個過程任意小量。就是說,除的數不是零,所以有意義,同時,這個小量可以取任意小,只要滿足在德爾塔區間,都小於該任意小量,我們就說他的極限為該數——你可以認為這是投機取巧,但是,他的實用性證明,這樣的定義還算比較完善,給出了正確推論的可能性。這個概念是成功的。

微積分是與實際應用聯絡著發展起來的,它在天文學、力學、化學、生物學、工程學、經濟學等自然科學、社會科學及應用科學等多個分支中,有越來越廣泛的應用。特別是計算機的發明更有助於這些應用的不斷髮展。

客觀世界的一切事物,小至粒子,大至宇宙,始終都在運動和變化著。因此在數學中引入了變數的概念後,就有可能把運動現象用數學來加以描述了。

由於函式概念的產生和運用的加深,也由於科學技術發展的需要,一門新的數學分支就繼解析幾何之後產生了,這就是微積分學。微積分學這門學科在數學發展中的地位是十分重要的,可以說它是繼歐氏幾何後,全部數學中的最大的一個創造。有了微積分,人類才有能力把握運動和過程。

有了微積分,就有了工業革命,有了大工業生產,也就有了現代化的社會。太空梭。宇宙飛船等現代化交通工具都是微積分的直接後果。

在微積分的幫助下,萬有引力定律發現了,牛頓用同一個公式來描述太陽對行星的作用,以及地球對它附近物體的作用。從最小的塵埃到最遙遠的天體的運動行為。宇宙中沒有哪一個角落不在這些定律的所包含範圍內。

這是人類認識史上的一次空前的飛躍,不僅具有偉大的科學意義,而且具有深遠的社會影響。它強有力地證明了宇宙的數學設計,摧毀了籠罩在天體上的神祕主義、迷信和神學。一場空前巨大的、席捲近代世界的科**動開始了。

毫無疑問,微積分的發現是世界近代科學的開端。

學微積分的用途是什麼?

2樓:匿名使用者

微積分是與應用聯絡著發展起來的,最初牛頓應用微積分學及微分方程為了從萬有引力定律匯出了開普勒行星運動三定律。此後,微積分學極大的推動了數學的發展,同時也極大的推動了天文學、力學、物理學、化學、生物學、工程學、經濟學等自然科學、社會科學及應用科學各個分支中的發展。並在這些學科中有越來越廣泛的應用,特別是計算機的出現更有助於這些應用的不斷髮展。

一元微分

定義: 設函式y = f(x)在某區間內有定義,x0及x0 + δx在此區間內。如果函式的增量δy = f(x0 + δx)

3樓:匿名使用者

微積分是研究函式的一個數學分支

微積分是與實際應用聯絡著發展起來的,它在天文學、力學、化學、生物學、工程學、經濟學等自然科學、社會科學及應用科學個分支中,有越來越廣泛的應用。特別是計算機的發明更有助於這些應用的不斷髮展。

微積分學是微分學和積分學的總稱

不規則圖形面積體積計算, 變力做功,非勻變速運動都會運用到微積分!

4樓:匿名使用者

個人感覺,沒用,除了上學的時候用的上,

微積分有何用處?

5樓:111111前的

1、用於**。

微積分,很多人認為,大學畢業以後,除了從事相關職業的人,工作和生活中根本用不上。事實上,恰恰相反,微積分在普通的工作和生活中用處非常大。微積分不僅可以運用在統計、工程、管理等各個方面,對於老百姓理財,也是大有裨益的。

比如**,學點微積分,可以炒得更好。

2、用於醫療。

數學對網際網路、對醫療都很有用。健康大資料模型將顛覆傳統醫學的思路,依託海量儲存和計算能力,實現精確「打擊」,為老百姓量身定做私人診療方案,從而達到健康管理和預防疾病的目的。

6樓:叫那個不知道

微積分學的發展與應用幾乎影響了現代生活的所有領域。它與大部分科學分支關係密切,包括精算、計算機、統計、工業工程、商業管理、醫藥、護理、人口統計,特別是物理學;經濟學亦經常會用到微積分學。幾乎所有現代科學技術,如:

機械、水利、土木、建築、航空及航海等工業工程都以微積分學作為基本數學工具。微積分使得數學可以在(非常數)變化率和總改變之間互相轉化,讓我們可以在已知其中一者時求出另一者。

物理學大量應用微積分;古典力學、熱傳和電磁學都與微積分有密切聯絡。已知密度的物體質量、物體的轉動慣量、物體在保守力場的總能量都可用微積分來計算。牛頓第二定律便是微積分在力學中的一個應用例子:

它的最初陳述使用了「變化率」一詞,而「變化率」即是指導數。

陳述大意為:物體動量的變化率等於作用在物體上的力,而且朝同一方向。今天常用的表達方式是 =m\mathbf } ,它包括了微分,因為加速度是速度的導數,或是位置向量的二階導數。

已知物體的加速度,我們就可以得出它的路徑。

麥克斯韋爾的電磁學理論和愛因斯坦的廣義相對論都應用了微分。化學使用微積分來計算反應速率,放射性衰退。生物學用微積分來計算種群動態,輸入繁殖率和死亡率來模擬種群改變。

微積分可以與其他數學分支並用。例如,可與線性代數並用,來求得某區域中一組點的「最佳」線性近似。它也可以用在概率論中,來確定由給定密度函式所給出的連續隨機變數之概率。

在解析幾何對函式影象的研究中,微積分可以用來求得最大值、最小值、斜率、凹度、拐點等。

格林公式將一個封閉曲線上的線積分,與一個邊界為且平面區域為的雙重積分聯絡起來。這一點被應用於求積儀這個工具,它用於量度在平面上的不規則圖形面積。例如,它可以在設計住宅擺設時,計算不規則的花瓣床、游泳池所佔的面積。

在醫療領域,微積分可以計算血管最優支角,將血流最大化。通過藥物在體內的衰退規律,微積分可以推匯出服藥規律。

在經濟學中,微積分可以通過計算邊際成本和邊際收益來確定最大利潤。

微積分也被用於尋找方程的近似值;實踐中,它是在各種應用裡解微分方程、求根的標準做法。典型的方法有牛頓法、定點迭代法、線性近似等。比如:

宇宙飛船利用一種尤拉方法的變體來求得零重力環境下的近似航線。

擴充套件資料

早期的微積分概念來自於埃及、希臘、中國、印度、伊拉克、波斯、日本,但現代微積分來自於歐洲。17世紀時,艾薩克·牛頓與戈特弗裡德·萊布尼茨在前人的基礎上提出微積分的基本理論。微積分基本概念的產生是建立在求瞬間運動和曲線下面積這兩個問題之上的。

微分應用包括對速度、加速度、曲線斜率、最優化等的計算。積分應用包括對面積、體積、弧長、質心、做功、壓力的計算。更高階的應用包括冪級數和傅立葉級數等。

微積分也使人們更加精確地理解到空間、時間和運動的本質。多個世紀以來,數學家和哲學家都在爭論除以零或無限多個數之和的相關悖論。這些問題在研究運動和麵積時常常出現。

古希臘哲學家埃利亞的芝諾便給出了好幾個著名的悖論例子。微積分提供了工具,特別是極限和無窮級數,以解決該些悖論。

7樓:小平愛飛

微積分作為數學知識的基礎 ,是學習經濟學的必備知識 ,微積分在經濟學中最基本的一些應用,計算邊際成本、 邊際收入、 邊際利潤並解釋其經濟意義, 尋求最小生產成本或制定獲得最大利潤的一系列策略

8樓:阿明嘉

學微積分可以開拓思維,提高自己的分析能,比如集散思維和立體想象能力,有很多無形的用處。

9樓:獨步芬芳

基本上沒用,我是學管理的,畢業以後再也沒有用過,其實那麼專業的演算法不搞數學研究根本沒用,不過,經濟類專業可能會用一些基本的簡單的演算法,我沒搞過個人投資,但是我身邊搞個人投資搞的很有興致的,我估計他們也不會微積分

10樓:匿名使用者

我也是學管理的 感覺微積分基本沒用,高等數學應該還有點用吧 微積分是高等數學的一部分

不過高等數學應該比微積分有用

但是這兩種數學都應該會改變我們的思維方式

11樓:夙婕史和暖

一言而蔽之,微積分是研究函式的一個數學分支。函式是現代數學最重要的概念之一,描述變數之間的關係,為什麼研究函式很重要呢?還要從數學的起源說起。

各個古文明都掌握一些數學的知識,數學的起源也很多很多,但是一般認為,現代數學直承古希臘。古希臘的很多數學家同時又是哲學家,例如畢達哥拉斯,芝諾,這樣數學和哲學有很深的親緣關係。古希臘的最有生命力的哲學觀點就是世界是變化的(德謨克利特的河流)和亞里斯多德的因果觀念,這兩個觀點一直被人廣泛接受。

前面談到,函式描述變數之間的關係,淺顯的理解就是一個變了,另一個或者幾個怎麼變,這樣,用函式刻畫複雜多變的世界就是順理成章的了,數學成為理論和現實世界的一道橋樑。

微積分理論可以粗略的分為幾個部分,微分學研究函式的一般性質,積分學解決微分的逆運算,微分方程(包括偏微分方程和積分方程)把函式和代數結合起來,級數和積分變換解決數值計算問題,另外還研究一些特殊函式,這些函式在實踐中有很重要的作用。這些理論都能解決什麼問題呢?下面先舉兩個實踐中的例子。

舉個最簡單的例子,火力發電廠的冷卻塔的外形為什麼要做成彎曲的,而不是像煙囪一樣直上直下的?其中的原因就是冷卻塔體積大,自重非常大,如果直上直下,那麼最下面的建築材料將承受巨大的壓力,以至於承受不了(我們知道,地球上的山峰最高只能達到3萬米,否則最下面的岩石都要融化了)。現在,把冷卻塔的邊緣做成雙曲線的性狀,正好能夠讓每一截面的壓力相等,這樣,冷卻塔就能做的很大了。

為什麼會是雙曲線,用於微積分理論5分鐘之內就能夠解決。

我相信讀者在看這篇文章的時候是在使用電腦,計算機內部指令需要通過硬體表達,把訊號轉換為能夠讓我們感知的資訊。前幾天這裡有個**演算法的帖子,很有代表性。windows系統帶了一個計算器,可以進行一些簡單的計算,比如算對數。

計算機是計算是基於加法的,我們常說的多少億次實際上就是指加法運算。那麼,怎麼把計算對數轉換為加法呢?實際上就運用微積分的級數理論,可以把對數函式轉換為一系列乘法和加法運算。

這個兩個例子牽扯的數學知識並不太多,但是已經顯示出微積分非常大的力量。實際上,可以這麼說,基本上現代科學如果沒有微積分,就不能再稱之為科學,這就是高等數學的作用。

《哈姆雷特》的主要內容是什麼,哈姆雷特主要內容???

這是一部真正拍出莎劇古典戲味的代表作,由勞倫斯 奧立佛自導自演,曾獲奧斯卡最佳影片金像獎。共分為十幕 1 深夜顯幽靈 2 先王揭陰謀 3 裝瘋傷情人 4 演戲巧試探 5 寡斷失良機 6 誤殺情人父 7 海上得脫險 8 情人斷芳魂 9 墓地起衝突 10 悲情大結局 描述丹麥王駕崩,守夜衛兵看見老王幽魂...

《紅巖》的主要內容是什麼,紅巖主要內容

內容簡介 1948年,中國在國民黨的統治下處在黎明前最黑暗的時刻。為了配合工人運動,重慶地下黨工運書記許雲峰命甫志高建立沙坪書店,作為地下黨的備用聯絡站。甫志高為了表現自己,不顧聯絡站的保密性質,擅自擴大書店規模,銷售進步書刊。一天,區委書記江姐要去華鎣山根據地,甫志高到碼頭為江姐送行,江姐囑咐他要...

童年主要內容,《童年》的主要內容是什麼

童年這本書主要講述了什麼內容?童年的回憶 童年似一杯濃濃的咖啡,暖到你心窩,童年似一杯淡淡的茶,讓你回味 童年似暴風雨的彩虹 五顏六色,炫麗無比 童年又似那晚霞後的餘光,那麼讓人懷念 又似那彎彎的小路,讓你成長。風兒不可能將這溫馨的回憶給吹掉 雨兒不可能把這一件一件感人的旋律掩沒,只有可愛的陽光將它...