積分是由導數變回原函式,微分是由原函式變導數,對嗎

2021-03-03 20:31:29 字數 5872 閱讀 3995

1樓:匿名使用者

差不多在計算上可以這樣理解吧

微分只是後面添一個dx而已

但是在概念上

微分和求導

二者是不一樣的

反函式的導數與原函式的導數有什麼關係

2樓:薔祀

原函式的導數等於反函式導數的倒數。

設y=f(x),其反函式為x=g(y),

可以得到微分關係式:dy=(df/dx)dx ,dx=(dg/dy)dy .

那麼,由導數和微分的關係我們得到,

原函式的導數是 df/dx = dy/dx,

反函式的導數是 dg/dy = dx/dy .

所以,可以得到 df/dx = 1/(dg/dx) .

擴充套件資料

反函式存在定理

定理:嚴格單調函式必定有嚴格單調的反函式,並且二者單調性相同。

在證明這個定理之前先介紹函式的嚴格單調性。

設y=f(x)的定義域為d,值域為f(d)。如果對d中任意兩點x1和x2,當x1y2,則稱y=f(x)在d上嚴格單調遞減。

證明:設f在d上嚴格單增,對任一y∈f(d),有x∈d使f(x)=y。

而由於f的嚴格單增性,對d中任一x'x,都有y''>y。總之能使f(x)=y的x只有一個,根據反函式的定義,f存在反函式f-1。

任取f(d)中的兩點y1和y2,設y1若此時x1≥x2,根據f的嚴格單增性,有y1≥y2,這和我們假設的y1因此x1如果f在d上嚴格單減,證明類似。

參考資料

3樓:弈軒

答:設原函式為y=f(x),則其反函式在y點的導數與f'(x)互為倒數(即原函式,前提要f'(x)存在且不為0)。解釋如下圖:

一定要注意,是反函式與原函式關於y=x的對稱點的導數互為倒數,不能隨便對應哦!

附上反函式二階導公式。

4樓:默辰

其實啥都沒有,看一下吧我的理解。。。

5樓:自由的風的我

原函式的導數等於反函式導數的倒數

6樓:du知道君

解:令y=f(x)為原函式,那麼y'=f'(x)也就是f(x)的導數.那麼這樣變換,由於x=[f^(-1)(f(x))]',對其求導,也就是1=f'(x)*f'^(-1)(f(x)),也就是1=f'(x)*f'^(-1)(y)對於函式的反函式,應該將y與x互換,也就是把反函式作用的物件變為x,這樣1=f'(x)*f^(-1)(x)從而結論得證.

7樓:微生子語

反函式的導數=原函式導數的倒數。

y=f(x)的反函式為x=f^(-1)(y),對發f(x)求導f'(x)=1/f^(-1)'(y),即dy/dx=1/(dx/dy)

8樓:雲嘉秀

反函式的導數與原函式導數相乘等於一

9樓:花之淚淚

這個距離我實在太遙遠了,好想現在也記得,但,現實不允許啊!

10樓:匿名使用者

個人理解,不知道對不對?

11樓:_營琪

補充兩種證明,

1.反函式點與原函式點是關於y=x對稱的,及兩斜率也是對稱的。

2.微分dy/dx=1/(dy/dx),dy/dx=f^-1(y)。

12樓:黃鶴樓精

相乘為一所以說互為倒數

13樓:匿名使用者

反函式的導數=原函式導數的倒數。

y=f(x)的反函式為x=1/f(y),即dy/dx=1/(dx/dy)

導數,微分,積分之間有什麼聯絡和區別

14樓:匿名使用者

簡單的理解,導數和微分在書寫的形式有些區別,如y'=f(x),則為導數,書寫成dy=f(x)dx,則為微分。積分是求原函式,可以形象理解為是函式導數的逆運算。

通常把自變數x的增量 δx稱為自變數的微分,記作dx,即dx = δx。於是函式y = f(x)的微分又可記作dy = f'(x)dx,而其導數則為:y'=f'(x)。

設f(x)為函式f(x)的一個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數),叫做函式f(x)的不定積分,數學表示式為:若f'(x)=g(x),則有∫g(x)dx=f(x)+c。

15樓:牙牙啊

導數、微分和積分都是一種運演算法則,和加減乘除是一個型別。當年牛頓搞的是導數,和積分。萊布尼茲從另一個角度也搞了研究,他是從微分的角度出發的,來搞微分和積分的。

雖然出發點不一樣,但導數和微分,二者在本質上是一樣的。僅僅表示形式不同。積分是導數(也是微分)的逆運算。

導數導數是微積分中的重要基礎概念。當函式y=f(x)的自變數x在一點x0上產生一個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。 導數是函式的區域性性質。

一個函式在某一點的導數描述了這個函式在這一點附近的變化率。如果函式的自變數和取值都是實數的話,函式在某一點的導數就是該函式所代表的曲線在這一點上的切線斜率。導數的本質是通過極限的概念對函式進行區域性的線性逼近。

例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。 不是所有的函式都有導數,一個函式也不一定在所有的點上都有導數。若某函式在某一點導數存在,則稱其在這一點可導,否則稱為不可導。

然而,可導的函式一定連續;不連續的函式一定不可導。

對於可導的函式f(x),x↦f'(x)也是一個函式,稱作f(x)的導函式(簡稱導數)。尋找已知的函式在某點的導數或其導函式的過程稱為求導。實質上,求導就是一個求極限的過程,導數的四則運演算法則也**於極限的四則運演算法則。

反之,已知導函式也可以倒過來求原來的函式,即不定積分。微積分基本定理說明了求原函式與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。

16樓:華山論劍部落格

微分:無限小塊的增量可以看作是變化率,也就是導數。

積分:無限小塊的面積和可以看作是整個面積。

17樓:匿名使用者

微分是什麼,微分導數教學,帶你弄懂微積分導數的整體邏輯!

18樓:愛作你的兔子

可導必連續,閉區間上連續一定可積,可積一定有界

如何求一個導數的原函式?

19樓:很多很多

求一個導數的原函式使用積分,積分

是微分的逆運算,即知道了函式的導函式,反求原函式。

積分求法:

1、積分公式法。直接利用積分公式求出不定積分。

2、換元積分法。換元積分法可分為第一類換元法與第二類換元法。

(1)第一類換元法(即湊微分法)。通過湊微分,最後依託於某個積分公式。進而求得原不定積分。

(2)第二類換元法經常用於消去被積函式中的根式。當被積函式是次數很高的二項式的時候,為了避免繁瑣的式,有時也可以使用第二類換元法求解。

3、分部積分法。設函式和u,v具有連續導數,則d(uv)=udv+vdu。移項得到udv=d(uv)-vdu

兩邊積分,得分部積分公式∫udv=uv-∫vdu。

20樓:匿名使用者

已知導數求原函式就是求積分

象這樣的複合函式一般是用變數代換。

f(x)=∫√(4-x^2)dx

令x=2sint

則 dx=2costdt

f(t)=∫2cost*2costdt

=2∫2cos^tdt

=2∫(cos2t+1)dt

=sin2t+2t

然後通過 sint=x/2

解得cost=√(1-x^2/4)

得到sin2t=2sint*cost=x/2*√(4-x^2)再由 sint=x/2,得到 t=arcsin(x/2)所以f(x)=x/2*√(4-x^2)+arcsin(x/2)一般有根號大多通過三角代換來求積分

√(1+x^2) 時 x=1/tant

√(1-x^2)時 x=sint 或者 x=cost√(x^2-1)時 x=csct

靈活執行三角公式就行了。

21樓:匿名使用者

主要是用到變換,將根號裡面的經過適當的變換去掉根號,之後就用一些積分公式將其積分出來,最後換成原來變數!比如這個題,我們設x=2cost,這樣就可以去掉根號啦!dx=-2sintdt

之後你就只要求f'(t)=2sint*(-2sint)=-4(sint)^2,對於這個積分先將次,在求積分!試試吧!

不定積分,定積分,原函式之間有什麼關係 區別。謝謝各位前輩從理論上說明。

22樓:飄飄記

一、理論不同

1、不定積分是一個函式集(各函式只相差一個常數),它就是所積函式的原函式(個數是無窮)。

定積分(它是一個數,常數),它可以通過不定積分來求得(牛頓萊布尼茨公式)。

2、函式 f(x)的定積分與這個函式的原函式f(x) 是緊密聯絡的. 定積分是由函式話f(x)確定的的某個值(一個數),而原函式f(x)是一個函式,它的導數是f(x),而不定積分是所有的原函式。

3、不定積分計算的是原函式(得出的結果是一個式子);定積分計算的是具體的數值(得出的借給是一個具體的數字)

擴充套件資料

常用積分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

性質1、函式的和的不定積分等於各個函式的不定積分的和;即:設函式

及的原函式存在,則

2、求不定積分時,被積函式中的常數因子可以提到積分號外面來。即:設函式

的原函式存在,

非零常數,則

23樓:不是苦瓜是什麼

聯絡:不定積分是所有原函式的稱呼,可以理解為同一個東西,是微分的逆問題。

區別:1.不定積分是一個函式集(各函式只相差一個常數),它就是所積函式的原函式(個數是無窮)。

定積分(它是一個數,常數),它可以通過不定積分來求得(牛頓萊布尼茨公式)。

2.函式 f(x)的定積分與這個函式的原函式f(x) 是緊密聯絡的. 定積分是由函式話f(x)確定的的某個值(一個數),而原函式f(x)是一個函式,它的導數是f(x),而不定積分是所有的原函式。

3.不定積分計算的是原函式(得出的結果是一個式子);定積分計算的是具體的數值(得出的借給是一個具體的數字)

常用積分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

24樓:匿名使用者

不定積分是一個函式集(各函式只相差一個常數),它就是所積函式的原函式(個數是無窮)

至於定積分(它是一個數,常數),它可以通過不定積分來求得(牛頓萊布尼茨公式)

X是F x 的原函式,求x f x dx的不定積分。f x 是F x 的導數

解 因sinx x是f x 的一個原函式,則sinx x f x dx 即f x sinx x cosx x sinx x 2又 x f x dx x d f x x f x f x dx 分部積分法 x cosx x sinx x 2 sinx x c cosx 2sinx x c.用分部積分法 ...

設yyx是由方程yexy所確定的隱函式,求dy

說明 此題應該是y e x y 解 y e x y dy e x y d x y dy e x y dx dy 1 e x y dy e x y dx dy e x y dx 1 e x y dy dx e x y 1 e x y 設y y x 是由方程e y xy 1所確定的隱函式,求dy dx ...

設yyx是由方程eyxy1所確定的隱函式,求dy

e y xy 1 兩邊同時對x求導得 e y y y xy 0所以y y e y x 即dy dx y e y x 如果不懂,請追問,祝學習愉快!設函式y y x 是由方程xy e x y所確定的函式,求dy dx y e dao x y dy e x y d x y dy e x y dx dy ...