計算二重積分x2y2dxdy,其中D是由yx

2021-03-03 20:41:39 字數 1209 閱讀 3530

1樓:pasirris白沙

1、本題的最佳積分方法是:運用極座標;

.2、具體的解答過程如下,如有疑問,歡迎追問;

有問必答,答必細緻;

有疑必釋,釋必精緻;

有錯必糾,糾必誠摯。

.3、**可以點選放大,放大後更加清晰。.

已知計算二重積分∫∫(x^2+y^2-x)dσ,其中d是由直線y=2,y=x及y=2x所圍成的閉區

2樓:g笑九吖

^積分割槽域為:0《x《1,0《y《x^2

∫∫(x^2+y^2)dσ

=∫(0,1)dx∫(0,x^2)(x^2+y^2)dy=∫(0,1)[x^2y+y^3/3)|(0,x^2)]dx=∫(0,1)[x^4+x^6/3)dx

=(1/5)+(1/21)

=26/105

3樓:匿名使用者

由題意可得出:y/2 ≤ x ≤ y,0 ≤ y≤ 2因此:∫∫(x²+y²-x)dx dy

=∫dy∫(x²+y²-x)dx

=∫dy[1/3x³+xy²-1/2x²] |(y/2,y)=∫[-((3y²)/8) +(19y³)/24]dy=13/6

擴充套件資料:二重積分的計算一般要化成累次積分來計算;做題時要會利用積分割槽域的對稱性;會利於被積函式的奇偶性;要會交換座標系。

二重積分求極限時,積分割槽域的分塊不是一個簡單的程式,當其中的每一塊的直徑都是無窮小時,意味著每一小塊都縮成一點,此時每一小塊中任選的一點幾乎就是積分割槽域d中的任一點。

4樓:匿名使用者

那就需要分成兩塊來列式,參考下圖:

5樓:蟲師小王子

上面的已經解答清楚了,我來說為什麼分兩部分。

因為(0,1)與(1,2)區間時不一樣,一個是y=x,另一個是y=2

計算二重積分∫∫√(x^2+y^2)dxdy,其中積分割槽域d={(x,y)|1<=x^2+y^2<=4}

6樓:章**鄞霜

這是二重積分,要確定積分上下限。

積分割槽域的圖形知道吧?是閉環域。

換成極座標後,角度θ從0積到2∏,r從1積到2。

表示式為∫dθ∫lnr^2

rdr,注意要寫積分上下限。

然後算2個定積分就行了。

求二重積分x2y2dxdy,其中Dx2y2小於等於

令x cos y sin 則原積分域轉化為 d 被積函式化為4 2,dxdy化為 d d 二重積分化為累次積分 2 2。i d 4 2 d 2 8 4 24 二重積分的計算,最基本也是最根本的是要理解轉化二重積分為累次積分的原理,即一個二重積分化為兩個有先後次序的定積分,這2個定積分一般彼此存在著關...

計算二重積分Dex2y2dxdy,其中Dx2y

換元法x rcosa x 2 y 2 1 所以0 r 1 0 a 2 y rcosa d e x 2 y 2 dxdy 0,2 0,1 e r 2 rdrda 2 1 2 0,1 e r 2 d r 2 e r 2 0,1 e 1 計算二重積分 x 2 y 2 dxdy,其中d x 2 y 2 2x...

計算二重積分Dlnx2y2dxdy,其中D

解 原式 0,2 d 1,1 2 ln r 2 rdr 作極座標變換 4 1,1 2 r lnrdr 4 ln2 1 8 應用分部積分法計算 ln2 1 2。用極座標算 x 來cos 自 y sin 積分割槽域d是上半圓,0,1 0,x 2 y 2 dxdy d 2d d 前的上限是 下限是0 d ...