1樓:pasirris白沙
1、本題的最佳積分方法是:運用極座標;
.2、具體的解答過程如下,如有疑問,歡迎追問;
有問必答,答必細緻;
有疑必釋,釋必精緻;
有錯必糾,糾必誠摯。
.3、**可以點選放大,放大後更加清晰。.
已知計算二重積分∫∫(x^2+y^2-x)dσ,其中d是由直線y=2,y=x及y=2x所圍成的閉區
2樓:g笑九吖
^積分割槽域為:0《x《1,0《y《x^2
∫∫(x^2+y^2)dσ
=∫(0,1)dx∫(0,x^2)(x^2+y^2)dy=∫(0,1)[x^2y+y^3/3)|(0,x^2)]dx=∫(0,1)[x^4+x^6/3)dx
=(1/5)+(1/21)
=26/105
3樓:匿名使用者
由題意可得出:y/2 ≤ x ≤ y,0 ≤ y≤ 2因此:∫∫(x²+y²-x)dx dy
=∫dy∫(x²+y²-x)dx
=∫dy[1/3x³+xy²-1/2x²] |(y/2,y)=∫[-((3y²)/8) +(19y³)/24]dy=13/6
擴充套件資料:二重積分的計算一般要化成累次積分來計算;做題時要會利用積分割槽域的對稱性;會利於被積函式的奇偶性;要會交換座標系。
二重積分求極限時,積分割槽域的分塊不是一個簡單的程式,當其中的每一塊的直徑都是無窮小時,意味著每一小塊都縮成一點,此時每一小塊中任選的一點幾乎就是積分割槽域d中的任一點。
4樓:匿名使用者
那就需要分成兩塊來列式,參考下圖:
5樓:蟲師小王子
上面的已經解答清楚了,我來說為什麼分兩部分。
因為(0,1)與(1,2)區間時不一樣,一個是y=x,另一個是y=2
計算二重積分∫∫√(x^2+y^2)dxdy,其中積分割槽域d={(x,y)|1<=x^2+y^2<=4}
6樓:章**鄞霜
這是二重積分,要確定積分上下限。
積分割槽域的圖形知道吧?是閉環域。
換成極座標後,角度θ從0積到2∏,r從1積到2。
表示式為∫dθ∫lnr^2
rdr,注意要寫積分上下限。
然後算2個定積分就行了。
求二重積分x2y2dxdy,其中Dx2y2小於等於
令x cos y sin 則原積分域轉化為 d 被積函式化為4 2,dxdy化為 d d 二重積分化為累次積分 2 2。i d 4 2 d 2 8 4 24 二重積分的計算,最基本也是最根本的是要理解轉化二重積分為累次積分的原理,即一個二重積分化為兩個有先後次序的定積分,這2個定積分一般彼此存在著關...
計算二重積分Dex2y2dxdy,其中Dx2y
換元法x rcosa x 2 y 2 1 所以0 r 1 0 a 2 y rcosa d e x 2 y 2 dxdy 0,2 0,1 e r 2 rdrda 2 1 2 0,1 e r 2 d r 2 e r 2 0,1 e 1 計算二重積分 x 2 y 2 dxdy,其中d x 2 y 2 2x...
計算二重積分Dlnx2y2dxdy,其中D
解 原式 0,2 d 1,1 2 ln r 2 rdr 作極座標變換 4 1,1 2 r lnrdr 4 ln2 1 8 應用分部積分法計算 ln2 1 2。用極座標算 x 來cos 自 y sin 積分割槽域d是上半圓,0,1 0,x 2 y 2 dxdy d 2d d 前的上限是 下限是0 d ...