1樓:匿名使用者
^^^說明:此題應該是y=e^(x+y)。
解:∵y=e^(x+y) ==>dy=e^(x+y)d(x+y)==>dy=e^(x+y)(dx+dy)
==>(1-e^(x+y))dy=e^(x+y)dx==>dy=e^(x+y)dx/(1-e^(x+y))∴dy/dx=e^(x+y)/(1-e^(x+y))。
設y=y(x)是由方程e^y+xy=1所確定的隱函式,求dy/dx
2樓:宇文仙
e^y+xy=1
兩邊同時對x求導得:e^y*y'+y+xy'=0所以y'=-y/(e^y+x)
即dy/dx=-y/(e^y+x)
如果不懂,請追問,祝學習愉快!
設y=y(x)是由方程e^y+xy=1的隱函式 求dy/dx 求過程
3樓:
兩邊對x求導,將y看成是x的複合函式:
y'e^y+y+xy'=0
得y'(e^y+x)=-y
y'=-y/(e^y+x)
求由方程xy=e的(x+y)次方所確定的隱函式y=y(x)的導數dy/dx
4樓:吉祿學閣
^^xy=e^(x+y)
(y+xy')=e^(x+y)*(x+y)'
y+xy'=e^(x+y)(1+y')
y+xy'=e^(x+y)+e^(x+y)(1+y')所以:dy/dx=y'=[e^(x+y)-y]/[x-e^(x+y)].
5樓:
兩邊對x求導得y+xy'=(1+y')*e^(x+y)
∴y'=[y-e^(x+y)]/[e^(x+y) -x]
設函式y=y(x)是由方程xy=e^x+y所確定的函式,求dy/dx
6樓:小小米
^y=e^dao(x+y)
dy=e^(x+y)d(x+y)
dy=e^(x+y)(dx+dy)
dy=e^(x+y)dx/(1-e^(x+y))dy/dx=e^(x+y)/(1-e^(x+y))。
設yyx是由方程eyxy1所確定的隱函式,求dy
e y xy 1 兩邊同時對x求導得 e y y y xy 0所以y y e y x 即dy dx y e y x 如果不懂,請追問,祝學習愉快!設函式y y x 是由方程xy e x y所確定的函式,求dy dx y e dao x y dy e x y d x y dy e x y dx dy ...
設yyx是由方程yxxy所確定的函式,x0,y
因為yx xy,兩邊取對數可得,xlny ylnx 兩邊對x求導可得,lny x yy y lnx yx,從而,y y x?lnyxy lnx y y?xlny x x?ylnx 故 dy y y?xlny x x?ylnx dx 由方程exy x y可得,當x 0時,e0 0 y 0 故y 0 e...
設yyx由方程y1lnxyey所確定求y的導數
y 1 ln x y e y y 0 1 x y x y e y y y 1 y x y e yy y y x y e yy 1 x y y 1 1 x y e y 1 x y y x y 1 x y e y 1y 1 x y e y x y 1 設y y x 由方程xe f y e y確定f x ...