求隱函式yxey,求隱函式yxey

2021-03-04 01:55:47 字數 6007 閱讀 8911

1樓:西域牛仔王

最後一行,左邊是 y ' 吧??其它都很好。

設函式y=y(x)由方程xy-e^x+e^y=0確定。求dy/dx.

2樓:薔祀

^e^y+xy=e

兩邊求導:

e^y*y'+y+xy'=0

∴y'(e^y+x)=-y

y'=-y/(e^y+x)

即dy/dx=-y/(e^y+x)

當x=0時,e^y=e,y=1

∴dy/dx|(x=0)=-1/e

擴充套件資料

隱函式導數的求解一般可以採用以下方法:

方法①:先把隱函式轉化成顯函式,再利用顯函式求導的方法求導;

方法②:隱函式左右兩邊對x求導(但要注意把y看作x的函式);

方法③:利用一階微分形式不變的性質分別對x和y求導,再通過移項求得的值;

方法④:把n元隱函式看作(n+1)元函式,通過多元函式的偏導數的商求得n元隱函式的導數。

舉個例子,若欲求z = f(x,y)的導數,那麼可以將原隱函式通過移項化為f(x,y,z) = 0的形式,然後通過(式中f'y,f'x分別表示y和x對z的偏導數)來求解。

e^x-e^y-sinxy=0的隱函式y=y(x)的導數 請大神寫出步驟 謝謝

3樓:吉祿學閣

^對方程兩du邊求導

zhi,得dao到:專

e^屬x-e^yy'-cosxy(y+xy')=0e^x-e^yy'=ycosxy+xy'cosxye^x-ycosxy=y'(xycosxy+e^y)y'=(e^x-ycosxy)/(xycosxy+e^y)

4樓:匿名使用者

^上面的源

好像有點小問題:

bai對方程兩du

邊求導zhi,得到:

e^daox-e^yy'-cosxy(y+xy')=0e^x-e^yy'=ycosxy+xy'cosxye^x-ycosxy=y'(xcosxy+e^y)y'=(e^x-ycosxy)/(xcosxy+e^y)

方程xy=e^(x+y)確定的隱函式y的導數是多少?

5樓:demon陌

方程xy=e^(x+y)確定的隱函式y的導數:y'=[e^(x+y)-y]/[x-e^(x+y)]

解題過程:

方程兩邊求導:

y+xy'=e^(x+y)(1+y')

y+xy'=e^(x+y)+y'e^(x+y)y'[x-e^(x+y)]=e^(x+y)-y得出最終結果為:y'=[e^(x+y)-y]/[x-e^(x+y)]如果方程f(x,y)=0能確定y是x的函式,那麼稱這種方式表示的函式是隱函式。而函式就是指:

在某一變化過程中,兩個變數x、y,對於某一範圍內的x的每一個值,y都有確定的值和它對應,y就是x的函式。關係用y=f(x)即顯函式來表示。

6樓:玉麒麟大魔王

方程這個確定隱函式導數是什麼?找一大學教授為您解答。

求由方程e^y+xy-e=0所確定的隱函式的導數dy/dx. 要詳細過程,說明為什麼要那樣求,不夠詳細不給分!

7樓:demon陌

由方程e^y+xy-e=0確定的函式是y=f(x),因此在對方程兩邊對於x求導時,要把y看成是x的函式,這樣就可以得到e^y*y'+y+xy'=0

從而得到y'=-y/(e^y+x)

注:y'=dy/dx

如果方程f(x,y)=0能確定y是x的函式,那麼稱這種方式表示的函式是隱函式。而函式就是指:在某一變化過程中,兩個變數x、y,對於某一範圍內的x的每一個值,y都有確定的值和它對應,y就是x的函式。

這種關係一般用y=f(x)即顯函式來表示。f(x,y)=0即隱函式是相對於顯函式來說的。

8樓:我是一個麻瓜啊

解題過程如下:

由方程e^y+xy-e=0確定的函式是y=f(x),因此在對方程兩邊對於x求導時,要把y看成是x的函式,這樣就可以得到e^y*y'+y+xy'=0

從而得到y'=-y/(e^y+x)

注:y'=dy/dx

擴充套件資料:隱函式導數的求解一般可以採用以下方法:

方法1:先把隱函式轉化成顯函式,再利用顯函式求導的方法求導;

方法2:隱函式左右兩邊對x求導(但要注意把y看作x的函式);

方法3:利用一階微分形式不變的性質分別對x和y求導,再通過移項求得的值;

方法4:把n元隱函式看作(n+1)元函式,通過多元函式的偏導數的商求得n元隱函式的導數。

例題:1、求由方程y²=2px所確定的隱函式y=f(x)的導數。

解: 將方程兩邊同時對x求導,得:

2yy'=2p

解出y'即得

y'=p/y

2、求由方程y=x ln y所確定的隱函式y=f(x)的導數。

解:將方程兩邊同時對x求導,得

y』=ln y+xy' /y

解出y'即得 。

9樓:天使和海洋

求導定義:函式y=f(x)的導數的原始定義為

y'=f'(x)=lim(δ

x→0)|(δy/δx)=lim(δx→0)|δy/lim(δx→0)|δx=dy/dx,

其中δy=f(x+δx)-f(x);

實數c的導數(c)'=0

導數的四則運演算法則:u=u(x),v=v(x);

加減法原則:(u±v)'=u'±v'

證明:(u±v)'=lim(δx→0)|(δ(u±v)/δx)=d(u±v)/dx,

其中δ(u±v)=u(x+δx)±v(x+δx)-u(x)±v(x)

=[u(x+δx)-u(x)]±[v(x+δx)-v(x)]

=δu±δv,

則(u±v)'=lim(δx→0)|(δ(u±v)/δx)

=lim(δx→0)|(δu/δx)±lim(δx→0)|(δv/δx)

=(du/dx)±(dv/dx)

=u'±v'

乘法法則(uv)'=u'v+uv'

證明:則(uv)'=lim(δx→0)|(δ(uv)/δx)=d(uv)/dx,

其中δ(uv)=u(x+δx)v(x+δx)-u(x)v(x)

=[u(x+δx)v(x+δx)-u(x)v(x+δx)]+[u(x)v(x+δx)-u(x)v(x)]

=[u(x+δx)-u(x)]v(x+δx)]+u(x)[v(x+δx)-v(x)]

=δu×v(x+δx)]+u(x)×δv

則(uv)'=lim(δx→0)|[(δu×v(x+δx)]+u(x)×δv)/δx]

=lim(δx→0)|[δu×v(x+δx)/δx]+lim(δx→0)|[u(x)×δv/δx]

=lim(δx→0)|[δu×v(x+δx)/δx]×lim(δx→0)|v(x+δx)+lim(δx→0)|u(x)×lim(δx→0)|[u(x)δv/δx]

=(du/dx)vx+u(x)(dv/dx)

=u'(x)v(x)+u(x)v'(x)

除法法則:(u/v)'=(u'v-uv')/v²

證明:與乘法法則的證法類似,此處略!

複合函式的求導法則:y=f(u)=f(u(x)),u=u(x),則y'=f'(u(x))×u'(x)

簡證:y=f(u)=f(u(x)),u=u(x),

則y'=lim(δx→0)|(δy/δx)

=lim(δx→0)|[(δy/δu)×(δu/δx)]

=lim(δx→0)|(δy/δu)×lim(δx→0)|(δu/δx)

=(dy/du)×(du/dx)

=f'(u(x))×u'(x)

e^y+xy-e=0——原隱函式,其中y=f(x)

兩邊求導得(e^y+xy-e)'=0'

左邊先由求導的加減法原則可知(e^y+xy-e)'=(e^y)'+(xy)'-(e)',

由常數的導數為0可知原隱函式兩邊求導後為:(e^y)'+(xy)'=0

由複合函式的導數可知(e^y)'=e^y×y',其中(e^x)'=e^x;

由求導的乘法法則可知(xy)'=y+xy',

即原隱函式的導數為e^y×y'+y+xy'=0(其中y'=dy/dx)

接下來求函式y的過程就是傳說中的求解微分方程,

這個求解通常都比較難,而且往往是非常難!

10樓:匿名使用者

很簡單啊。

隱函式為f(x,y)=e^y+xy-e

這個隱函式的求導有個公式dy/dx=f(x,y)對x的偏導除以f(x,y)對y的偏導,並加上一個負號。(不會打偏導負號,見諒)即:dy/dx=-fx/fy

dy/dx=--y/(e^y+x)

11樓:匿名使用者

^設 y= f(x)

方程 :

e^(f(x))+xf(x)-e=0

在方程的兩邊對x求導數

e^(f(x)) f '(x)+f(x)+xf '(x)=0 .........①

解出:f ' (x)= -f(x)/[x+e^(f(x))]即 y ' = -y/(x+e^y)...........②這說明:

在.①中把f(x),換成 y ,就是把y 看成 x 的函式來 求導;有

e^y * y'+ y+ xy'=0

12樓:匿名使用者

把方程的兩邊對x求導數

e^y·(dy/dx)+y+x·(dy/dx)=0從而dy/dx=-y/(x+e^y)

希望你能理解

13樓:匿名使用者

看看,你覺得夠詳細嗎?我認為不能在詳細了!

14樓:數學天才

解:由e^y+xy-e=0得e^y+xy=e

等式兩邊取導得e^y*(dy/dx)+y+x(dy/dx).

整理得dy/dx=-y/(e^y+y)

15樓:沉默

對方程兩邊e^y+xy-e=0求導

得e^ydy+xdy+ydx=0(其中dxy=xdy+ydx)

所以dy/dx=-y/(e^y+x)

16樓:使命召喚

由隱函式的求導法則可知,

dy/dx.e^y+y+xdy/dx=0

dy/dx= -y/(x+e^y)

17樓:匿名使用者

一種用偏導.一種把y看成x的函式...老師應該會講用2這種方法求解的...

求由方程xy-e^x+e^y=0所確定的隱函式y=y(x)的導數。先對x求導y+xy'-e^x+e^y y'=0 y'=(e^x-y)/(x+e^y)

18樓:匿名使用者

隱函式即用式子f(x,y)=0來確定x和y之間的關係,而只要在某一範圍內的x的每一個值,y都有確定的值和它對應,y就是x的函式

那麼既然x和y是用式子f(x,y)=0來確定的,為什麼y的導數y' 就不能也用x和y一起來表達呢?

實際上這樣只是為了使用方便,

你要願意把裡面的y轉換為只用x 表達的式子,那樣當然可以,但是太過於麻煩了

大學數學題目理解。設函式y=y(x)由xy+e^y^2-x=0確定。這句話是什麼意思。。 20

19樓:

就是一個方程確定的x與y的關係。對於複雜的關係,無法寫成y=f(x)的關係式,或者寫成顯式函式關係比較複雜,可以用一個方程表達。在這個方程中,給定x一個值,可以計算出y的值(不過往往過程比較複雜)。

這種用方程表達的函式(相對於y=f(x)形式而言)叫做「隱函式」,方程式中,隱藏了x與y的函式關係。

隱函式,不必先化成顯式函式y=f(x),也可以求導數。這就是隱函式的求導法。

20樓:我畫著困了

對方程求導得y+xy′+2yy′e∧y∧2=0將點(1,0)帶入得y′=1

所以切線方程裡的k=1

方程為y=x-1

xyexy隱函式的導數,怎麼求

建構函式,f x,y xy e xy 則dy dx fx fy y e xy y x e xy x 方程xy e x y 確定的隱函式y的導數是多少?方程xy e x y 確定的隱函式y的導數 y e x y y x e x y 解題過程 方程兩邊求導 y xy e x y 1 y y xy e x...

隱函式y tan x y 求二階導數

由方程y tan x y 兩邊直接對x求導,得 y 1 y sec2 x y 兩邊繼續對x求導,得 y y sec2 x y 2 1 y 2sec2 x y tan x y 將y 1 y sec2 x y 代入,化簡得 y 2csc2 x y cot3 x y 擴充套件資料 關於隱函式求導,有兩種方...

求下列隱函式的一階導數ycos xy x yy tan x y 我算的答案總是跟標準的不一樣,只好求助了

1 cos xy x y cos xy x y sin xy xy 1 y sin xy x y xy 1 y sin xy y xy 1 y 0 xsin xy 1 y ysin xy 1y ysin xy 1 xsin xy 1 2 y tan x y y sec x y x y sec x y...