cscseccot在同角三角函式中是什麼意思

2021-03-03 22:04:36 字數 6457 閱讀 2507

1樓:匿名使用者

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

請問三角函式中secα和cscα是什麼意思??

2樓:昆字_上下讀

這是6個三

角函式中的三種關係之一:乘法關係。具體如下圖在這個六邊形中,每個角代表一個三角函式,6個函式有三種關係:

平方和關係:處於對角線的2個三角函式的平方和等於1倒數關係:處於對角線的2個三角函式互為倒數乘法關係:每一角上的三角函式等於與之相鄰的2個三角函式的積希望幫到你了!

3樓:匿名使用者

^sec(正割)csc(餘割)

那兩個函式不相同,定義域不同,f(x)=1是一條直線,x可取任意實數

而g(x)=sec^2x-tan^2x=cos^2x/cos^2x=1,但cosx不能等於0,即x不能等於kpi+pi/2,k為整數,pi為圓周率。

4樓:

sec表示正割=1/cos

csc表示餘割=1/sin

他倆分別是sin和cos的倒數

5樓:匿名使用者

csc@是sin@的倒數,sec@是cos@的倒數

6樓:祈平聞人半蕾

secα意思是cosα分之一

同角三角函式關係式有哪些?

7樓:河傳楊穎

^1、平方關係:

(1)sin^2(α

)+cos^2(α)=1 cos^2a=(1+cos2a)/2

(2)tan^2(α)+1=sec^2(α) sin^2a=(1-cos2a)/2

(3)cot^2(α)+1=csc^2(α)

2、積的關係:

(1)sinα=tanα*cosα

(2)cosα=cotα*sinα

(3)tanα=sinα*secα

(4)cotα=cosα*cscα

(5)secα=tanα*cscα

(6)cscα=secα*cotα

3、倒數關係:

(1)tanα·cotα=1

(2)sinα·cscα=1

(3)cosα·secα=1

誘導公式口訣「奇變偶不變,符號看象限」意義:

k×π/2±a(k∈z)的三角函式值.

當k為偶數時,等於α的同名三角函式值,前面加上一個把α看作銳角時原三角函式值的符號;

當k為奇數時,等於α的異名三角函式值,前面加上一個把α看作銳角時原三角函式值的符號。

傅立葉級數

傅立葉級數又稱三角級數

f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx)

a0=1/π∫(π..-π) (f(x))dx

an=1/π∫(π..-π) (f(x)cosnx)dx

bn=1/π∫(π..-π) (f(x)sinnx)dx

8樓:樂觀的高飛

同角三角函式的基本關係式:

(1)平方關係

(2)乘積關係

sinα=cosα·tanα,cosα=sinα·cotα

cotα=cosα·cscα,cscα=cotα·secα

secα=cscα·tanα,tanα=secα·sinα

(3)倒數關係

sinα·cscα=1

cosα·secα=1

tanα·cotα=1

這些都是比較常用的三角函式關係,對高考而言,沒有那個是特殊的重點。

拓展資料:

三角和的三角函式:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

輔助角公式:

asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中

sint=b/(a^2+b^2)^(1/2)

cost=a/(a^2+b^2)^(1/2)

tant=b/a

asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b

倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

半形公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

降冪公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

9樓:匿名使用者

同角三角函式的基本關係式:

根據三角函式定義,容易得到如下關係式:

(1)平方關係

(2)乘積關係

sinα=cosα·tanα,cosα=sinα·cotαcotα=cosα·cscα,cscα=cotα·secαsecα=cscα·tanα,tanα=secα·sinα(3)倒數關係

sinα·cscα=1

cosα·secα=1

tanα·cotα=1

記憶方法(如圖):首先某函式與它的餘函式在同一水平線上.

①在對角線上的兩個三角函式值的乘積等於1,如tanα·cotα=1.

③任意一個頂點上的三角函式值等於與它相鄰的兩個頂點的函式值的乘積,如sinα=cosα·tanα,cosα=sinα·cotα.

10樓:瘋言勿語

關係式很多,只要是靠正六邊形吧

關係式順推和逆推都要熟

常用的是 sinx^2+cosx^2=1

tanx^2-1=1/cosx^2

tanx*cotx=1

11樓:我是why星的

還有sinx+cosx=根號2倍的sin(x+∏/4)

12樓:匿名使用者

沒有問題星辰之賜星辰之賜xc

同角三角函式的基本關係式如何推導

13樓:溪邊影行

·平方關係:

sin^2(α

)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

·積的關係:

sinα=tanα*cosα

cosα=cotα*sinα

tanα=sinα*secα

cotα=cosα*cscα

secα=tanα*cscα

cscα=secα*cotα

·倒數關係:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

三角函式恆等變形公式

·兩角和與差的三角函式:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·輔助角公式:

asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中

sint=b/(a^2+b^2)^(1/2)

cost=a/(a^2+b^2)^(1/2)

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

·三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

·半形公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降冪公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=vercos(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

·萬能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·積化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化積公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanatanbtan(a+b)+tana+tanb-tan(a+b)=0

14樓:御景羽晨

0.基礎的

cos(α

+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

tαn(α+β)=(tαnα+tαnβ)/(1-tαnαtαnβ)

tαn(α-β)=(tαnα+tαnβ)/(1+tαnαtαnβ)

1.萬能公式

令tan(a/2)=t

sina=2t/(1+t^2)

cosa=(1-t^2)/(1+t^2)

tana=2t/(1-t^2)

2.輔助角公式

asint+bcost=(a^2+b^2)^(1/2)sin(t+r)

cosr=a/[(a^2+b^2)^(1/2)]

sinr=b/[(a^2+b^2)^(1/2)]

tanr=b/a

3.三倍角公式

sin(3a)=3sina-4(sina)^3

cos(3a)=4(cosa)^3-3cosa

tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]

4.積化和差

sina*cosb=[sin(a+b)+sin(a-b)]/2

cosa*sinb=[sin(a+b)-sin(a-b)]/2

cosa*cosb=[cos(a+b)+cos(a-b)]/2

sina*sinb=-[cos(a+b)-cos(a-b)]/2

5.積化和差

sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]

sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]

cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]

cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

任意角三角函式的定義與概念,任意角的三角函式的定義是什麼

你好 任意角的bai三角函式的du定義 在高中zhi學習三角函式時 dao,我們將要把銳角擴充到內任意角,那麼只在直角三容角形中定義三角函式就不科學,不方便了.因此,對於任意角的三角函式,我們雖然仍在單位圓中來下定義,但是其含義就發生了微妙的變化.如圖所示 在直角座標系中,o的半徑為1,任意角 的三...

同角三角函式的基本關係是啥,同角三角函式關係式有哪些?

三類 一 同角三角函式的基本關係 sin 2 cos 2 1 tan cot sin csc cos sec 1 sec 2 tan 2 csc 2 cos 2 1 二 誘導公式,在360 內的變換 角度制 取值sin cos tan sin cos tan sin cos tan 180 sin ...

同角三角函式間的基本關係式,同角三角函式的基本關係式如何推導

平方關係 sin 2 cos 2 1 tan 2 1 sec 2 cot 2 1 csc 2 積的關係 sin tan cos cos cot sin tan sin sec cot cos csc sec tan csc csc sec cot 倒數關係 tan cot 1 sin csc 1 c...