1樓:迷惘
·平方關係:
sin^2(α
)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
·積的關係:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
·倒數關係:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
直角三角形abc中,
角a的正弦值就等於角a的對邊比斜邊,
餘弦等於角a的鄰邊比斜邊
正切等於對邊比鄰邊,
2樓:匿名使用者
說的清楚點,你是說和差化積那些公式?
3樓:飛千僕燁磊
由cos²α=25/16求cosα並不存在同角三角函式轉換關係。
因為cos²α=(cosα)²
也就是cosα=±√(25/16)
所以cosα=±5/4
同角三角函式的基本關係式如何推導
4樓:溪邊影行
·平方關係:
sin^2(α
)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
·積的關係:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
·倒數關係:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
三角函式恆等變形公式
·兩角和與差的三角函式:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·輔助角公式:
asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中
sint=b/(a^2+b^2)^(1/2)
cost=a/(a^2+b^2)^(1/2)
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
·半形公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=vercos(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
·萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanatanbtan(a+b)+tana+tanb-tan(a+b)=0
5樓:御景羽晨
0.基礎的
cos(α
+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
tαn(α+β)=(tαnα+tαnβ)/(1-tαnαtαnβ)
tαn(α-β)=(tαnα+tαnβ)/(1+tαnαtαnβ)
1.萬能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
2.輔助角公式
asint+bcost=(a^2+b^2)^(1/2)sin(t+r)
cosr=a/[(a^2+b^2)^(1/2)]
sinr=b/[(a^2+b^2)^(1/2)]
tanr=b/a
3.三倍角公式
sin(3a)=3sina-4(sina)^3
cos(3a)=4(cosa)^3-3cosa
tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]
4.積化和差
sina*cosb=[sin(a+b)+sin(a-b)]/2
cosa*sinb=[sin(a+b)-sin(a-b)]/2
cosa*cosb=[cos(a+b)+cos(a-b)]/2
sina*sinb=-[cos(a+b)-cos(a-b)]/2
5.積化和差
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]
sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]
cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]
cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]
三角函式關係式
6樓:最愛優優
三角函式值表:
數關係tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的關係
tanα=sinα/cosα cotα=cosα/sinα
正弦二倍角公式
sin2α = 2cosαsinα
推導:sin2a=sin(a+a)=sinacosa+cosasina=2sinacosa
拓展公式:
sin2a=2sinacosa=2tanacos2a=2tana/[1+tan2a]
餘弦二倍角公式
餘弦二倍角公式有三組表示形式,三組形式等價:
1.cos2a=cos2a-sin2a=[1-tan2a]/[1+tan2a]
2.cos2a=1-2sin2a
3.cos2a=2cos2a-1
推導:cos2a=cos(a+a)=cosacosa-sinasina=cos^2a-sin^2a=2cos^2a-1=1-2sin^2a
正切二倍角公式
tan2α=2tanα/[1-tan2α]
推導:tan2a=tan(a+a)=(tana+tana)/(1-tanatana)=2tana/[1-tan2a]
擴充套件資料:
一、以下關係,函式名不變,符號看象限
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
二、兩角和公式
cot(a+b)=(cotacotb-1)/(cotb+cota) cot(a-b)=(cotacotb+1)/(cotb-cota)
tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb)
cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb
sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-sinbcosa
三、積化和差公式
sinαsinβ = [cos(α-β)-cos(α+β)] /2
sinαcosβ = [sin(α+β)+sin(α-β)]/2
cosαsinβ = [sin(α+β)-sin(α-β)]/2
7樓:捷遠扈珍
常用的是
sinx^2+cosx^2=1
tanx^2-1=1/cosx^2
tanx*cotx=1
同角三角函式的基本關係式
倒數關係:
商的關係:
平方關係:
tanα
·cotα=1
sinα
·cscα=1
cosα
·secα=1
1+tan2α=sec2α
1+cot2α=csc2α
誘導公式
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈z)
兩角和與差的三角函式公式
萬能公式
sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβ
tan(α+β)=——————
1-tanα
·tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα
·tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)
1-tan2(α/2)
cosα=——————
1+tan2(α/2)
2tan(α/2)
tanα=——————
1-tan2(α/2)
半形的正弦、餘弦和正切公式
三角函式的降冪公式
二倍角的正弦、餘弦和正切公式
三倍角的正弦、餘弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=—————
1-tan2α
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=——————
1-3tan2α
三角函式的和差化積公式
三角函式的積化和差公式
α+βα-β
sinα+sinβ=2sin—--·cos—-—22α+βα-β
sinα-sinβ=2cos—--·sin—-—22α+βα-β
cosα+cosβ=2cos—--·cos—-—22α+βα-β
cosα-cosβ=-2sin—--·sin—-—221sinα
·cosβ=-[sin(α+β)+sin(α-β)]21cosα
·sinβ=-[sin(α+β)-sin(α-β)]21cosα
·cosβ=-[cos(α+β)+cos(α-β)]21sinα
·sinβ=-
-[cos(α+β)-cos(α-β)]
2化asinα
±bcosα為一個角的一個三角函式的形式(輔助角的三角函式的公式)
同角三角函式的基本關係是啥,同角三角函式關係式有哪些?
三類 一 同角三角函式的基本關係 sin 2 cos 2 1 tan cot sin csc cos sec 1 sec 2 tan 2 csc 2 cos 2 1 二 誘導公式,在360 內的變換 角度制 取值sin cos tan sin cos tan sin cos tan 180 sin ...
三角函式與角度關係式三角函式sin,cos,tan各等於什麼邊比什麼邊
一 常用公式 sin a cos a 1 tana sina cosa cosa sina 1 tana二 幾個特殊角 0 90 180 sin0 0 cos0 1 tan0 0 sin90 1 cos90 0 tan90 趨於無窮大,或說不存在。sin180 0 cos180 1 tan180 0...
cscseccot在同角三角函式中是什麼意思
tan cot 1 sin csc 1 cos sec 1 請問三角函式中sec 和csc 是什麼意思?這是6個三 角函式中的三種關係之一 乘法關係。具體如下圖在這個六邊形中,每個角代表一個三角函式,6個函式有三種關係 平方和關係 處於對角線的2個三角函式的平方和等於1倒數關係 處於對角線的2個三角...