如何直觀形象的理解梯度散度旋度,解釋下梯度散度和旋度,淺顯易懂些,謝謝

2021-03-03 20:27:06 字數 4498 閱讀 3877

1樓:

散度 可以理解為是面積分與體積分的關係 這個兩個在高數中解釋的很清楚 旋度是向量函式 旋度是標量函式 兩個函式最大區別就是有無方向的問題

求大神解釋一下梯度旋度散度的關係與理解 50

2樓:馬傳浩小馬

資料顯示=求梯度是針對一個標量函式,求梯度的結果是得到一個向量函式。求散度則是針對一個向量函式,得到的結果是一個標量函式,跟求梯度是反一下的;求旋度是針對一個向量函式,得到的還是一個向量函式。這三種關係可以從定義式很直觀地看出,因此可以求「梯度的散度」、「散度的梯度」、「梯度的旋度」、「旋度的散度」和「旋度的旋度」,只有旋度可以連續作用兩次,而一維波動方程具有如下的形式。

梯度、散度和旋度(1)其中a為一實數,於是可以設想,對於一個向量函式來說,要求得它的波動方程,只有求它的「旋度的旋度」才能得到。望採納

解釋下「梯度」「散度」和「旋度」,淺顯易懂些,謝謝

3樓:匿名使用者

梯度是向量,其大小為該點函式的最大變化率,即該點的最大方向導數。

梯度的方向為該點最大方向導數的方向,即與等值線(面)相垂直的方向,它指向函式增加的方向。

三維空間中的一個向量可以沿x、y和z方向分解,現假設空間的某一點被賦予的向量能夠沿著這3個方向分解為大小為p、q和r的三個分量,表示為(p,q,r)。注意,由於空間中每個點被賦予的向量一般來說是不同的,所以p、q和r的大小在空間的不同的點一般有不同的值,也就是說p、q和r中每一個都是x、y和z的函式。

對三維向量場來說,我們可以對其中一個點的向量,假設為(p,q,r)進行以下操作:

1、求出dp/dx+dq/dy+dr/dz的值,其中dp/dx表示求p對x的一階偏導數,其餘雷同;

2、將這個值賦予這個點

對整個向量場的每個點均進行以上運算,就等於給整個三維空間的每個點都賦予了一個值,於是我們就得出了一個新的標量場,這個標量場就叫做原來的向量場的散度(divergence),這種運算就叫做「對向量場取散度」。

旋度是向量;其物理意義為環量密度,可以從斯托克斯公式裡理解

旋度為零,說明是無旋場;旋度不為零時,則說明是有旋場。

旋度計算是兩個向量之間的「叉乘」,其結果是向量。其方向滿足右手法則。

4樓:匿名使用者

設體系中某處的物理引數(如溫度、速度、濃度等)為w,在與其垂直距離的dy處該引數為w+dw,則稱為該物理引數的梯度,也即該物理引數的變化率。如果引數為速度、濃度或溫度,則分別稱為速度梯度、濃度梯度或溫

散度指流體運動時單位體積的改變率。簡單地說,流體在運動中集中的區域為輻合,運動中發散的區域為輻散。用以表示的量稱為散度,值為負時為輻合,此時有利於天氣系統的的發展和增強,為正時表示輻散,有利於天氣系統的消散。

表示輻合、輻散的物理量為散度。

表示曲線、流體等旋轉程度的量。

5樓:匿名使用者

散度梯度旋度其實是物理上的一種概念,主要在流體力學裡應用!

在流體力學數學基礎裡可以查到他們的意義與關係!高數裡也有簡單涉及,如果想深入瞭解,建議你最好去查查有關流體力學基礎的東西!其中有個名詞叫哈密跟運算元,散度梯度旋度跟這一名詞的關係明白了,其它的相關運算也就會了!

流場中速度的散度和旋度分別表示什麼物理意義

6樓:匿名使用者

物理意義:

速度的散度:流體的體膨脹,

速度的旋度:流體的旋轉,產生渦流

7樓:匿名使用者

如何直觀形象的理解梯度,散度,旋度? - 知乎

我覺得這個講得很形象,你看看吧

8樓:愛幫忙的沙礫

散度是閉合曲面圍成空間中的通量除以圍成空間體積,然後令曲面無限小。旋度是閉合曲線圍成面積中的環流除以圍成範圍面積,然後令曲線無限小給個直觀點的。

散度:曲面範圍內,如果場線(比如電場線和磁場線)穿過範圍內進出量不一樣,那這個場在這個點就是有散度的。直觀講,以電場為例,如果這個點包圍了一個電子(當然電子有一定的體積,可能讓曲面無窮小時仍被包尾,這裡只是打個比方),那麼肯定是個有源場,有電場線穿入範圍,而沒有電場線穿出,散度不為零。

旋度:換一條閉合曲線,如果場沿曲線做積分不為零,說明這個面積內旋度不為零。積分是不是不好理解?

這麼說,沿著曲線一點一點疊加場量,場量和曲線同向就取正,反向就取負。因為曲線是閉合的,所以如果疊加出來不為零,說明沿曲線轉了一圈的方向,場疊加也不為零。

最極端的例子,我們的閉合曲線取正圓,包圍了一個通電導線,導線周圍的磁場也是一個正圓,那麼正圓磁場沿著正圓曲線一點一點疊加一圈(因為都是同向或反向)肯定不為零,所以這就是一個有旋場。

怎麼從物理的角度通俗易懂地解釋梯度,散度和旋度

9樓:

設計方案型:通過給出一定情景,讓學生利用所學物理知識進行解決問題的方案設計,從而考查學生的運用物理知識解決實際問題的能力。

(5)、非常規性測量物理量:比如天平、量筒(或量杯)是測量密度的兩種常用工具,但有時受實驗條件的限制或缺量筒(或量杯)、或缺天平,甚至兩種器材均無,從而考查學生的運用知識能力、創造能力與解決實際問題的能力。

(6)就綜合試題而言,大多的學生應對這樣的考題是有一定難度的,有些甚至感到無從下手,這是由於它作為壓軸的拉分題出現,出現這種情況也是不可避免的。事實上在實際的解決綜合能力題過程中,無論是多複雜的綜合能力考題只要是學生訓練過同型別的就不會感覺到無從下手。由此可見在進行綜合能力題的複習過程中需要教師在平時訓練時要多進行這方面的訓練,從反覆中逐漸提高學生解決綜合題的能力與技巧。

如何直觀形象的理解梯度,散度,旋度

10樓:滿身是刺

三者的關係:注意各自針對的物件不同。 1.

梯度的旋度▽×▽u=0 梯度場的旋度為0,故梯度場是保守常例如重力常 2.梯度的散度▽2u=△u 3.散度的梯度▽(▽·a) 梯度、散度和旋度是向量分析裡的重要概念。

之所以是「分析」,因為三者是三種偏導數計算形式。

梯度散度旋度的物理含義

11樓:匿名使用者

我們一個一個說:

首先是梯度:

定義:在標量場f中的一點處存在一個向量g,該向量方向為f在該點處變化率最大的方向,其模也等於這個最大變化率的數值,則向量g稱為標量場f的梯度。

如果設體系中某處的物理引數(如溫度、速度、濃度等)為w,在與其垂直距離的dy處該引數為w+dw,則稱為該物理引數的梯度,也即該物理引數的變化率。

在向量微積分中,標量場的梯度是一個向量場。標量場中某一點上的梯度指向標量場增長最快的方向,梯度的長度是這個最大的變化率。

其次是散度:

定義:div f=▽·f

在向量場f中的任一點m處作一個包圍該點的任意閉合曲面s,當s所限定的區域直徑趨近於0時,比值∮f·ds/δv的極限稱為向量場f在點m處的散度。

由散度的定義可知,div f表示在點m處的單位體積內散發出來的向量f的通量,所以div f描述了通量源的密度。 散度可用表徵空間各點向量場發散的強弱程度,當div f>0 ,表示該點有散發通量的正源;當div f<0 表示該點有吸收通量的負源;當div =0,表示該點為無源場。

最後是旋度:

定義:面元與所指向量場f之向量積對一個閉合面s的積分除以該閉合面所包容的體積之商,當該體積所有尺寸趨於無窮小時極限的一個向量。

設想將閉合曲線縮小到其內某一點附近,那麼以閉合曲線l為界的面積也將逐漸減小.一般說來,這兩者的比值有一極限值,記作即單位面積平均環流的極限。它與閉合曲線的形狀無關,但顯然依賴於以閉合曲線為界的面積法線方向且通常l的正方向與規定要構成右手螺旋法則。

旋度的重要性在於,可用通過研究表徵向量在某點附近各方向上環流強弱的程度,進而得到其單位面積平均環流的極限的大小程度。

最後總結一下,梯度表徵的是某點標量的變化率;散度表徵的是某點通量的密集程度,可以理解為場線的密集程度;旋度表徵的是某點附近發現上的環流強弱程度。

12樓:匿名使用者

都是顧名思義。

梯度用來形容一個標量場,他表示這個標量場沿某一方向的變化率。學過2維的導數吧,變數y沿x座標的梯度就是y沿x方向的導數。導數越大,表示這個量變化的越快。

散度形容一個向量場的在空間的斂散強度。散度的正負表示該向量場的收斂還是發散,大小表示該量場通量的空間體密度。舉個例子:

你發想在一個封閉曲面內,某一個向量場做散度計算為零,那麼你選的這個曲面內部一般沒有這個向量場的激發源,如果是正的,說明向量場從你選的空間內對外膨脹,發散,越大說明強度越猛。負的,表示該向量場在你選的空間內部發生了湮滅,越大,說明湮滅的強度越猛。

旋度表示向量場對其作用的元素的旋轉強度。他的正負代表他會對其作用的元素朝著順時針或逆時針方向旋轉,他的大小表示這個旋轉力的大小。舉個例子:

你站在漩渦中,水流的推力的旋度肯定是垂直水平的,垂直水平向上代表(按右手定則)你會被逆時針捲入漩渦,旋度朝下反之;顯然你在漩渦中心和漩渦邊緣受到的推力大小肯定不一樣,說明漩渦中間的旋度比邊緣的大。旋度反映了向量場超某個面的面密度。

關於梯度,散度,旋度的外文那裡有啊

看看這裡吧 介紹一本關於研究散度旋度梯度的書,我看不懂英文,有本向量微積分看不懂 散度旋度梯度是高等數學或數學分析研究的一小部分內容,後者的敘述會更詳細些,一本專門研究散度旋度梯度的書是找不到的。梯度 散度 旋度在高數書哪一章 高數書中,梯度在多元微積分這一章 散度和旋度在場論初步或曲線積分與曲面積...

瞭解梯度旋度散度的說明的借閱書籍有哪些

散度散度指流體運動時單位體積的改變率。簡單地說,流體在運動中集中的區域為輻合,運回動中發散的區域為輻散。答用以表示的量稱為散度,值為負時為輻合,此時有利於天氣系統的的發展和增強,為正時表示輻散,有利於天氣系統的消散。表示輻合 輻散的物理量為散度。旋度,公式沒法在這裡寫 詳見梯度gradient設體系...

散度和旋度誰可以給比較準確的定義

散度 divergence 可用於表徵空間各點向量場發散的強弱程度,物理上,散度的意義是場的有源性。當div f 0 表示該點有散發通量的正源 發散源 當div f 0 表示該點有吸收通量的負源 洞或匯 當div f 0,表示該點無源。旋度是向量分析中的一個向量運算元,可以表示三維向量場對某一點附近...