1樓:知導者
一般規定輻角主值的範圍是[-π,π)。按照這個規定,第一象限的輻角主值範圍是(0,π/2),第二象限為(π/2,π),第三象限為(-π,-π/2),第四象限為(-π/2,0)
複變函式輻角主值象限如何確定
2樓:普海的故事
^方程z=xye^z兩邊對x求導數:∂z/∂x=ye^z+xye^z∂z/∂x ∂z/∂x
=ye^z/(1-xye^z)
方程z=xye^z兩邊對y求導數:∂z/∂y=xe^z+xye^z∂z/∂y ∂z/∂y
=xe^z/(1-xye^z)
複變函式裡的主值到底什麼意思
3樓:喵喵喵
在複平面上,複數所對應的向量與x軸正方向的夾角成為複數的輻角,顯然一個複數的輻角有無窮多個,但是在區間(-π,π]內的只有一個,這個輻角就是該向量的輻角主值,也稱主輻角,記為argz。
複數的模與輻角是複數三角形式表示的兩個基本元素,複數所對應的向量長度稱為複數的幅值,該向量與實軸正方向的夾角為複數的輻角。輻角的大小有無窮多,但是輻角主值唯一確定。
擴充套件資料
設ƒ(z)是平面開集d內的複變函式。對於z∈d,如果極限存在且有限,則稱ƒ(z)在z處是可導的,此極限值稱為ƒ(z)在z處的導數,記為ƒ'(z)。這是實變函式導數概念的推廣,但複變函式導數的存在卻蘊含著豐富的內容。
這是因為z+h是z的二維鄰域內的任意一點,極限的存在條件比起一維的實數情形要強得多。一個複變函式如在z的某一鄰域內處處有導數,則該函式必在z處有高階導數,而且可以展成一個收斂的冪級數(見解析函式)。
所以複變函式導數的存在,對函式本身的結構有重大影響,而這些結果的研究,構成了一門學科──複變函式論。
4樓:demon陌
複數的模與輻角是複數三角形式表示的兩個基本元素,複數所對應的向量長度稱為複數的幅值,該向量與實軸正方向的夾角為複數的輻角。輻角的大小有無窮多,但是輻角主值唯一確定。
複變函式裡e^[(2k+1)πi]=-1,ln(-1)=(2k+1)πi,我們規定它的主值為ln(-1)=πi。
z^4,把全平面對映稱四葉全平面。其反函式 z^(1/4),全平面的原像可以是四個象限,為了確定是第幾象限,利用z^4=-1四個根(1/√2)(±1+±i),指定(-1)^(1/4)其中某個值作為主值,可確定某個象限。
5樓:徐臨祥
這是對多值函式單值枝的規定,與三角函式反函式主值類似,規定一個最基本區間。例如arcsinx的主值區間為[-π/2,π/2],sinπ/4=1/√2,sin11π/4=1/√2,我們規定。arcsin(1/√2)=π/4。
複變函式裡e^[(2k+1)πi]=-1,ln(-1)=(2k+1)πi,我們規定它的主值為ln(-1)=πi。z^4,把全平面對映稱四葉全平面。其反函式 z^(1/4),全平面的原像可以是四個象限,為了確定是第幾象限,我們利用z^4=-1四個根(1/√2)(±1+±i),指定(-1)^(1/4)其中某個值作為主值,可確定某個象限。
6樓:匿名使用者
輻角主值
中文名 輻角主值
外文名 principal argument angle
別 稱 主輻角
區 間 (-π,π]
定義複數的模與輻角是複數三角形式表示的兩個基本元素,複數所對應的向量長度稱為複數的幅值,該向量與實軸正方向的夾角為複數的輻角。輻角的大小有無窮多,但是輻角主值唯一確定。
輻角主值的計算
例題1:
求複變函式 ln(1+i) 的主值
1+i=根號2乘以e的i(派/4+2k派)其中k是整數.這裡用的是複數的指數形式.為什麼加上2k派呢.
因為我們知道角度概念擴充套件.在軸上表示同一個位置的角是相差2k派.主值的話是滿足角度在-派到派之間,其中派可取,-派不可取.
那麼這裡的話很明顯就是角度是派/4,ln(1+i)=ln根號2+派/4=0.5ln2+派/4
例題2:
複變函式裡的主值到底什麼意思?
(1) ,求ln(-i)及其主值 ,2kpi - pi/2 ) ,主值為 i**i/2
(2) ,求ln(-3+4i)及其主值 ,
ln5 - iarctan(4/3) + i(2kpi + pi)
主值為 ln5 + i(pi - arctan(4/3))
我看出(1)題的主值是令k=1求得的 ,而(2)題的主值是令k=0求得的 ,這怎麼回事 沒有個規定的?
(2)題的答案照公式來應該是 ln5 - i( arctan(-4/3) + 2kpi )
又arctan(-4/3)=-arctan(4/3) ,所以也可以寫成 ln5 - i( -arctan(4/3) + 2kpi)
這樣怎麼不對?為什麼答案要多加一個pi?
複數z的輻角有無窮多個,其中有一個角稱為輻角的主值,如果一個複變函式的函式值與輻角有關,且是多值函式,那麼輻角取主值時的一個分支就稱為函式的主值了.
比如對數函式lnz=ln(re^i(ψ+2kπ))=lnr+i(ψ+2kπ),k是任意整數,ψ是z的輻角的主值.k=0時的一個分支lnr+iψ稱為lnz的主值,記為lnz,即lnz=lnr+iψ.
注意:有些書上把輻角的主值定義為[0,2π)內的角度,有的是把輻角的主值定義為-π與π之間的角.這裡的答案很明顯選擇的是前者。
怎麼化輔角主值範圍 45
7樓:
θ=argz+2kπ(k=0,±1答:應該是輻角。理由是,任一非零複數z=x+iy所對應的向量oz與實軸正向的夾角θ=arctan(y/,±2,……)。
供參考啊;x)稱為輻角(記作argz),而z由無窮多個輻角,通常將處於[0,2π]之間的特定值argz作為argz的主值
複變函式輻角函式問題
8樓:沙丁魚醬
不需要從定義出發去判斷,而可以從一個定理(複變函式解析的充要條件)去判斷。
對於複數z=a+bi(a、b∈r),當a≠0時,其輻角的正切值就是b/a。其實應該是把適合於0≦θ<2π的輻角θ的值,叫做輻角的主值,記作argz。輻角的主值是唯一的,且有arg(z)=arg(z)+2kπ。
z=ρ( cos φ + isin φ )為該複數的三角式
複變函式裡的主值到底什麼意思? 30
9樓:
複數z的輻角有無窮多個,其中有一個角稱為輻角的主值,如果一個複變函式的函式值與輻角有關,且是多值函式,那麼輻角取主值時的一個分支就稱為函式的主值了。
比如對數函式lnz=ln(re^i(ψ+2kπ))=lnr+i(ψ+2kπ),k是任意整數,ψ是z的輻角的主值。k=0時的一個分支lnr+iψ稱為lnz的主值,記為lnz,即lnz=lnr+iψ。
注意:有些書上把輻角的主值定義為[0,2π)內的角度,有的是把輻角的主值定義為-π與π之間的角。這裡的答案很明顯選擇的是前者。
10樓:我不是無聊的
兄弟你哪個學校的啊 ????你說的題和我們作業一樣??你們也用綠皮的西安交大版的教材????
複數輻角問題,複變函式輻角函式問題
a i 2 a 2 2ai i 2 a 2 2ai 1 a 2 1 2ai 根據題意,a i 的平方的輻角主值是二分之丌,也就是90度,則虛部為0,即2ai 0,所以實數a 0。複變函式輻角函式問題 不需要從定義出發去判斷,而可以從一個定理 複變函式解析的充要條件 去判斷。對於複數z a bi a ...
複變函式中如何證明複變函式的可導性與解析性?求大神
一般證明中用到的都是下面的 充要條件 注意 對於複變函式而言,可微與可導是等價的 複變函式的可導性與解析性有什麼不同 代表的就是那個e 2.71828 證明方法如下 lim n 1 1 n n lim n e ln 1 1 n n lim n e n ln 1 1 n e lim n ln 1 1 ...
複變函式中什麼是入變換,複變函式中的s具體是什麼意思?式子進行拉普拉斯變換後有什麼用
解答 複變函式與積分變換 是由複變函式和積分變換兩部分內容組成的一門基礎課。複變函式主要包括複數及其運算 複變函式的基本概念及其性質,特別是解析函式及其相關性質 複變函式的積分 複數項級數及其性質 留數理論及其應用等。它是專業理論研究和實際應用方面不可缺少的有力數學工具。積分變換重點介紹付氏變換和拉...