1樓:鐵道部的b臉
是的不過有條件 矩陣a可逆的充要條件是其行列式的值 |a| 不等於0
a^(-1)=(1/|a|)×a* ,其中a^(-1)表示矩陣a的逆矩陣,其中|a|為矩陣a的行列式,a*為矩陣a的伴隨矩陣。
怎樣判斷一個矩陣是否可逆?
2樓:一顆心的距離麗
n階方陣a為可逆的,重要條件是它的
行列式不等於0,一般只要看它的行列式就可以啦。
矩陣可逆=矩陣非奇異=矩陣對應的行列式不為0=滿秩=行列向量線性無關。
行列式不為0,首先這個條件顯然是必要的。其次當行列式不為0的時候,可以直接構造出逆矩陣,於是充分。
具體構造方法每本書上都有,大體上是用行列式按行列定理,即對矩陣a,元素寫為a_ij,則sigma(j)a_ij*m_kj=deta*delta_ik,其中m_ij為代數餘子式,於是b_ij=m_ji/deta即為a的逆矩陣。
線性代數中的矩陣的轉置和矩陣的逆矩陣有什麼區別和聯絡?
3樓:阿樓愛吃肉
一、線性代數中的矩陣的轉置和矩陣的逆矩陣有2點不同:
1、兩者的含義不同:
(1)矩陣轉置的含義:將a的所有元素繞著一條從第1行第1列元素出發的右下方45度的射線作鏡面反轉,即得到a的轉置。一個矩陣m, 把它的第一行變成第一列,第二行變成第二列等,最末一行變為最末一列, 從而得到一個新的矩陣n。
這一過程稱為矩陣的轉置。即矩陣a的行和列對應互換。
(2)逆矩陣的含義:一個n階方陣a稱為可逆的,或非奇異的,如果存在一個n階方陣b,使得ab=ba=e,則稱b是a的一個逆矩陣。a的逆矩陣記作a-1。
2、兩者的基本性質不同:
(1)矩陣轉置的基本性質:(a±b)t=at±bt;(a×b)t= bt×at;(at)t=a;(ka)t=ka。
(2)逆矩陣的基本性質:可逆矩陣一定是方陣。如果矩陣a是可逆的,其逆矩陣是唯一的。
a的逆矩陣的逆矩陣還是a。記作(a-1)-1=a。可逆矩陣a的轉置矩陣at也可逆,並且(at)-1=(a-1)t (轉置的逆等於逆的轉置)。
二、矩陣的轉置和逆矩陣之間的聯絡:矩陣的轉置和逆矩陣是兩個完全不同的概念。轉置是行變成列列變成行,沒有本質的變換,逆矩陣是和矩陣的轉置相乘以後成為單位矩陣的矩陣。
擴充套件資料:
一、逆矩陣的其它性質:
1、若矩陣a可逆,則矩陣a滿足消去律。即ab=o(或ba=o),則b=o,ab=ac(或ba=ca),則b=c。
2、兩個可逆矩陣的乘積依然可逆。
3、矩陣可逆當且僅當它是滿秩矩陣。
二、逆矩陣性質的證明:
1、逆矩陣是對方陣定義的,因此逆矩陣一定是方陣。設b與c都為a的逆矩陣,則有b=c。
2、假設b和c均是a的逆矩陣,b=bi=b(ac)=(ba)c=ic=c,因此某矩陣的任意兩個逆矩陣相等。
3、由逆矩陣的唯一性,a-1的逆矩陣可寫作(a-1)-1和a,因此相等。
4、矩陣a可逆,有aa-1=i 。(a-1)tat=(aa-1)t=it=i ,at(a-1)t=(a-1a)t=it=i由可逆矩陣的定義可知,at可逆,其逆矩陣為(a-1)t。而(at)-1也是at的逆矩陣,由逆矩陣的唯一性,因此(at)-1=(a-1)t。
5、在ab=o兩端同時左乘a-1(ba=o同理可證),得a-1(ab)=a-1o=o,而b=ib=(aa-1)b=a-1(ab),故b=o。
6、由ab=ac(ba=ca同理可證),ab-ac=a(b-c)=o,等式兩邊同左乘a-1,因a可逆aa-1=i 。得b-c=o,即b=c。
4樓:匿名使用者
這是兩個完全不同的概念
轉置是行變成列列變成行,沒有本質的變換
逆矩陣是和這個矩陣相乘以後成為單位矩陣的矩陣這個是一個本質的變換,逆矩陣除了一些顯然的性質以外還有一些很特殊的性質,例如無論左乘還是右乘原矩陣,都是單位矩陣。
5樓:s指點江山
沒有關係。轉置是把行和列交換,逆是相乘等於e,一般用初等變換法
6樓:匿名使用者
這個你想具體詳細搞清楚,建議看教材,把課後題做一下會理解較好,其實沒什麼聯絡。
簡單的說,轉置就是把矩陣的行和列交換,第一行變為第一列,第二行變為第二列,等等。
而逆矩陣就是和原來的矩陣乘起來等於單位陣e,這一點相當於一個數的倒數,和原來的數相乘等於1。
線性代數合同矩陣求可逆矩陣問題如圖
因為可逆矩陣是一系列初等矩陣的乘積,所以矩陣合同也可以理解作 對矩陣a進行相同的行初等變換 列初等變換,變成了b。這裡交換a的第一三行,再交換一三列,就得到了b,所以c 0 0 1 0 1 0 1 0 0 高數線性代數。已知合同,求可逆矩陣。怎麼求啊?顯然a和b都合同於標準型d diag 就用教材裡...
線性代數中再可逆矩陣中det是什麼意思
det 是英文 determinant 的字頭 是行列式的意思 如 det a 行列式a.性代數中det 是啥意思啊?40 矩陣的行列式 determinant 如a矩陣的行列式,用符號det a 表示。在矩陣a取一個標量,寫作det a 或 a 即行列式a,矩陣用 表示 det a 表示a的行列式...
線性代數矩陣問題,線性代數的矩陣問題
先在等式兩邊同時右乘a,得 ab b 3a b 3a a e 1 又aa a e a a a 1 a a n 1 a的伴隨陣的行列式等於內a的行列式的n 1次方 容 由a diag 1,1,4 得 a 4,n 3,n 1 2且 a 0 a 4 2 a a a 1 2a 1 diag 2,2,1 2 ...