什麼是三階幻方

2021-05-04 09:21:18 字數 1595 閱讀 3739

1樓:棟棟拐

三階幻方是最簡單的幻方,是由9個數字組成的一個三行三列的矩陣,其每一行、每一列和兩條對角線的數字的和(稱為幻和值)都相等。

如用1、3、5、9、11、13、17、19、21這9個數字組成的三階幻方:

19 1 13

5 11 17

9 21 3

幻和值=33。

最簡單的三階幻方是用1、2、3、4、5、6、7、8、9這9個陣列成的:

6 1 8

7 5 3

2 9 4

幻和值=15。

三階幻方又叫九宮格,中國古代九宮格的填法口訣是:

九宮之義,法以靈龜,二四為肩,六八為足,左三右七,戴九履一,五居**。

4 9 2

3 5 7

8 1 6

或,2 9 4

7 5 3

6 1 8

奇階幻方的口訣是(適用於3階幻方等所有的奇階幻方):

1 居上行正**,依次斜填切莫忘,上出框界往下寫,右出框時左邊放,重複便在下格填,出角重複一個樣。

8 1 6

3 5 7

4 9 2

1)在第一行居中的方格內放1,依次向右上方填入2、3、4…;

2)如果這個數所要放的格已經超出了頂行那麼就把它放在底行,仍然要放在右一列;

3)如果這個數所要放的格已經超出了最右列那麼就把它放在最左列,仍然要放在上一行;

4)如果右上方已有數字和出了對角線,則向下移一格繼續填寫。

3階幻方不止這一種填法,只要間1放於四個變格的正中,向幻方外側依次斜填其餘數字;若出邊,將數字另一側;若目標格已有數字或出角,回一步填寫數字,再繼續按一開始的相同方向依次斜填其餘數字。

3階幻方的性質:

下面是用1-9構成的3階幻方:

8 1 6

3 5 7

4 9 2

幻和值=15。

性質一:幻和值=3×5(3×中心格數);

性質二:2×8=9+7,2×4=1+7,2×6=3+9,2×2=1+3;即:2×角格的數=非相鄰的2個邊格數之和。

性質三:以中心對稱的2個數相加的和相等,這2個數的和值=2×中心格數。

性質四:幻方的每個數乘以x,再加y,幻方亦成立。

例如把1-9構成的3階幻方的每個數乘以3,再加3:

27 6 21

12 18 24

15 30 9

幻和值=54

性質五:3個一組的數,組與組等差,每組數與數等差,這樣的數能構成3階幻方。

例如以下3組9個數:

【2、4、6】、【13、15、17】、【24、26、28】構成幻方,

26 2 17

6 15 24

13 28 4

幻和值=45。

2個推論:

(由性質三)推論:以中心對稱的2個數同為偶數或同為奇數;

(由性質

二、三)推論:4個邊格數同為偶數或同為奇數。

2樓:手機使用者

在1個3乘3的方框裡填入1·9使橫行、豎行及對角線上3個數之和等於15(不能填重複數字)

3樓:童真白馬

幻方真的很好玩,希望您學習愉快!

三階魔方怎麼還原,三階魔方如何還原?

1.首先,想要還原一個3階魔方,必須應該瞭解它的構造,它由6箇中心塊,8個角塊及12個稜塊構成。不管怎麼旋轉,6箇中心塊相對位置永遠不會改變,改變的只有角塊和稜塊。其次應該知道每個面的表示方法,2.用層先法還原魔方總共分為7步,那麼首先開始第一步解法,任意選一面作為底部,然後再確認前面色塊的顏色,那...

為什麼得出三階可導,三階可導有什麼含義?

在高等數學中,基本初等函式構成的初等函式在閉區間上都是n階可導版的,題目中的冪權函式,和對數函式都是基本初等函式,由他們構成的初等函式,自然就是n階可導的。三階導數自然是可以的。題中所說的三階導數,是因為剛好用到三階,所以才這麼說 三階可導有什麼含義?就是 成 x n 這種級數時,三階導數 f x ...

九階幻方和數獨有什麼區別,幻方和數陣有什麼區別幻方和數獨有什麼區別?

九階幻方用1 81,這81個數字填寫,每個數用1次 數獨用9組1 9,一共81個數字填寫,要求同行或者同列不能有相同的數字 幻方和數陣有什麼區別?幻方和數獨有什麼區別?主要是概念上和數字構成上的區別 1 幻方和數陣有什麼區別?幻方 在一個由若干個排列整齊的陣列成的正方形中,圖中任意一橫行 一縱行及對...