1樓:江山有水
可以用公式直接求導,但是在真正計算時,f(x)的表示式你能否確定是哪一個?如果不能,往往是因為該函式在此點左右兩邊的表示式不同引起的,故而分成左右兩邊討論就是很自然的事情,這就是左右導數。
2樓:匿名使用者
間斷點是連續的,也不能保證在這一點左右導數相等即可導。
所以不能直接用表示式求導。
3樓:大學數學王子
間斷點左右極限不一樣的啊
左右極限不一樣,那麼極限就不存在,
如果還不清楚,想想他的物理意義,
倒數就是斜率
y=|x|
是個分段函式
它是連續的
在x=0處的斜率是多少?
左極限是-1
右極限是1
x=0處的斜率不能確定
x=0處導數不存在
4樓:寸嬪百里含巧
2023年的《660》選擇題第55題就是關於分段點導數問題和導數連續性問題,當時沒做明白,於是我查了些書,現在總結一下希望大家看看對不對。
輔導書上都是求各分段上的顯然可導的初等函式的導數,(
設分段點為x0
)然後求x趨近x0時候導函式的極限值,得到倆個極限值,書上說這倆個值就是x0的左右導數,如果相等,則函式在x0處可導(進而說明導函式在x0處連續)!
首先,要明確:
1。x趨於x0時導函式的極限存在,不能說明x0處可導
2。有個用lagrange定理可以證明的結論,也就是輔導書上解法的理論,就是:當f(x)在x0的領域內連續,在x0的去心鄰域內可導,則x趨近x0時候導函式的極限值
等於x0點的導數值。要注意的是:這個條件只是個充分條件,不能說:
若x趨近x0時候導函式的極限不存在時候,則x0不可導。一般情況下,用輔導書上的都滿足上述定理的條件,所以可以用此方法而且非常方便!
但是:遇到比較“較真兒,**”的題時候,題設的條件不能求出x趨近x0時候導函式的極限時(比如題設條件:不滿足在x0的領域內連續,在x0的去心鄰域內可導,或者不能使用羅比達法則,因而極限無法順利切出來),千萬不能說此點不可導!
所以還是用定義求吧,正如戰地老師說的:老老實實少犯錯。。。
5樓:
應該還要看其他的條件吧
我記得用那個間斷點的函式表示式除了要求間斷點是連續的,還有其他條件..具體我不記得了...很久沒用了
6樓:匿名使用者
條件應該決定你所做的一切,
斷點使不間斷的,認識好條件。
分段函式往往是出現再應用題比較多!
關於分段函式在分段點求導的問題!
7樓:匿名使用者
其實你可以給一個具體的題目具體分析
但是 以定義去求導的我想一般在 x=0沒有意義吧那麼此時通過定義 求極限x->0不失為一種好方法了一般的題目 也是x=0的左右導數均可以用公式求導的還有什麼問題可以追問的
8樓:匿名使用者
一般來說,分段函式在分界點處的導數用定義來求總是妥當的。
關於“可用求導公式的,需要在等於0的一側”,似乎不盡然,例如,絕對值函式y=∣x∣,
我們把它表示成分段函式時,把等於0放在哪一側並不影響問題的本質。
再例如,分段函式:當x≥0時,f(x)=√x;當x<0時,f(x)=0與
分段函式:當x>0時,f(x)=√x;當x≤0時,f(x)=0,按照“可用求導公式的,需要在等於0的一側”來做的話,是什麼情況呢?
分段函式求導,分段函式分段點處求導的問題
第一問 老師前半句說的話相當對,但是對初學者理解這道題起不到什麼作用。函式的導數還沒解決,再整導數的函式豈不是更凌亂。至於後半句 請問 先用求導公式求導 這個所謂錯誤怎麼犯?此題在0處,有可用的求導公式?忽略老師的話吧,他也許是怕你們還理解不了深入的,先讓你們記住現成的結論。分段函式求導,那麼重點不...
c計算並輸出分段函式。。幫忙找問題
include void main 你將if那一行換成這樣就可以了 if 5.0 x x 0.0 x 2.0 我用你的源程式編譯是不能通過的,5.0 x 0.0會報錯。樓主你 5.0 x 0.0 直接先這樣寫當然是錯的了改為 5.0 x x 0.0 其他一樣,用c 程式設計分段函式 求大神c4 6a...
高數對於分段函式分段的點就算連續也不可導?比如這個函式,X 0時不可導
連續是可導來的必要條件,不是充分源條件bai.就算函式不分段,也不一du 定可導好zhi嗎?當x 0時,f 0 lim x 0 f x f 0 x 0 lim x 0 x 2x 1 x用洛必達dao法則求出該極限為 1,在x 0處不可導 高數中關於分段函式f x 在分段點x0的可導性問題 證明就是了...