1樓:匿名使用者
好的lz
對於第n項的等差數列,總有
a[n]= (a[n-1] +a[n+1])/2這裡n>1
也即等差數列除開首項外的任何一個項,都是他前後兩項的均值上述結論可擴充套件到前後距離k項的兩項的均值,甚至前後各取對稱的m數的項的均值
等差數列中項求和公式是什麼
2樓:到此為止
等差數列基本公式: 末項=首項+(項數-1)*公差 項數=(末項-首項)÷公差+1 首項=末項-(項數-1)*公差 和=(首項+末項)*項數÷2 末項:最後一位數 首項:
第一位數 項數:一共有幾位數 和:求一共數的總和。
sn=na(n+1)/2 n為奇數
sn=n/2(a n/2+a n/2 +1) n為偶數等差數列如果有奇數項,那麼和就等於中間一項乘以項數,如果有偶數項,和就等於中間兩項和乘以項數的一半,這就是中項求和。
公差為d的等差數列{an},當n為奇數是時,等差中項為一項,即等差中項等於首尾兩項和的二分之一,也等於總和sn除以項數n。將求和公式代入即可。當n為偶數時,等差中項為中間兩項,這兩項的和等於首尾兩項和,也等於二倍的總和除以項數n.
3樓:518姚峰峰
1、等差數列公式
等差數列公式an=a1+(n-1)d
前n項和公式為:sn=na1+n(n-1)d/2若公差d=1時:sn=(a1+an)n/2若m+n=p+q則:存在am+an=ap+aq若m+n=2p則:am+an=2ap
以上n均為正整數
文字翻譯
第n項的值an=首項+(項數-1)×公差
前n項的和sn=首項+末項×項數(項數-1)公差/2公差d=(an-a1)÷(n-1)
項數=(末項-首項)÷公差+1
2、等差數列中項求和公式
數列為奇數項時,前n項的和=中間項×項數
數列為偶數項,求首尾項相加,用它的和除以2等差中項公式2an+1=an+an+2其中是等差數列
4樓:g老師講奧數
等差數列的求和一般公式
和=(首項+末項)x項數÷2公差就是相鄰兩個項之差,
項數就是數列中全部項有多少個,
項數=(末項-首項)÷公差+1在等差數列計算中,常常用到兩種方法。
①配對法;②倒序相加法;
計算1+2+3+4+5+6+……+99+100=?
1、配對法顧名思義,將其中某些項配成相同的對,達到簡化計算的目的。
通過觀察數列,
你會發現1+100=2+99=3+98……第一項與最後一項的和,
第二項與倒數第二項的和,
第三項與倒數第三項的和,
他們都是相等的!
那我們就可以把數列配成對,
看看一共有多少對,
不就能算出他們的和了嗎?
(1+100)=101;
(2+99)=101;
(3+98)=101;
(4+97)=101;
……(50+51)=101;
從其中挑出兩項配對組成101,
一共有100個項,
兩兩配對,
所以,一共配了100÷2=50對
那麼這個從1加到100的數列和我們就得到了,101x50=5050。
2、倒序相加法一個等差數列求和,我們讓它首尾顛倒後,再相加,這樣就會得到一個各項相等的數列,再乘以它的項數,除以2,即可得到數列的和。
g老師純手寫
如上圖所示,
讓上下兩個數列相加,
1+100=101;
(2+99)=101;
(3+98)=101;
(4+97)=101;
……(99+2)=101;
(100+1)=101;
組成的新數列,
每一項都是101;
一共有100項,
那麼他的和就是101x100。
所以原數列的和就是:
101x100÷2=5050
5樓:向陽
等差中項求和公式,這個公式主要是對於奇數項的這個數列藍說的,比如這個前九項之和,可以等於九倍a5
6樓:love小莫忘
sn=na(n+1)/2 n為奇數
sn=n/2(a n/2+a n/2 +1) n為偶數
考行測?
7樓:拾回舊好
sn=n(a1+an)/2
8樓:拌吶拌吶拌拌麵
中項哪有什麼求和公式 中項就是兩項中間的一個項
9樓:匿名使用者
前後兩項的幾何平均數
等差數列中項公式
10樓:匿名使用者
等差:通項公式an=a1+(n-1)d;
求和:n=1時,sn=s1=a1;
n>=2時,sn= n(a1+an)/2=n(n-1)d/2等比:通項公式an=a1·qn-1
求和:q=1時,sn=nq;
q不等於1時,a1(1-qn)/1-q
等比與等差數列前n項和公式?
11樓:真心話啊
1、等比
數列求和公式:
2、等差數列求和公式:
即(首項+末項)×項數÷2。
等比數列是指從第二項起,每一項與它的前一項的比值等於同一個常數的一種數列,常用g、p表示。這個常數叫做等比數列的公比,公比通常用字母q表示(q≠0),等比數列a1≠ 0。其中中的每一項均不為0。
注:q=1 時,an為常數列。
等差數列是指從第二項起,每一項與它的前一項的差等於同一個常數的一種數列,常用a、p表示。這個常數叫做等差數列的公差,公差常用字母d表示。
12樓:淵風羽
等差數列和公式 :sn=n(a1+an)/2=na1+n(n-1)/2 d
等比數列求和公式:當 q≠1時 ,sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)
當q=1時sn=na1
(a1為首項,an為第n項,d為公差,q 為等比)
13樓:wuli柾國喲
等比:1.當公比q=1時,sn=na1
2.當q不等於1時,sn=a1(1-q^n)/(1-q)或 sn=(a1-an*q)/(1-q)
等差:1.sn=n(a1+an)/2
2. sn=na1+n(n-1)d/2
等比數列
公式就是在數學上求一定數量的等比數列的和的公式。另外,一個各項均為正數的等比數列各項取同底數數後構成一個等差數列;反之,以任一個正數c為底,用一個等差數列的各項做指數構造冪can,則是等比數列。
拓展資料;
等比的故事:
根據歷史傳說記載,國際象棋起源於古印度,至今見諸於文獻最早的記錄是在薩珊王朝時期用波斯文寫的.據說,有位印度教宰相見國王自負虛浮,決定給他一個教訓。
他向國王推薦了一種在當時尚無人知曉的遊戲.國王當時整天被一群溜鬚拍馬的大臣們包圍,百無聊賴,很需要通過遊戲方式來排遣鬱悶的心情.
國王對這種新奇的遊戲很快就產生了濃厚的興趣,高興之餘,他便問那位宰相,作為對他忠心的獎賞,他需要得到什麼賞賜。
宰相開口說道:請您在棋盤上的第一個格子上放1粒麥子,第二個格子上放2粒,第三個格子上放4粒,第四個格子上放8粒……即每一個次序在後的格子中放的麥粒都必須是前一個格子麥粒數目的倍數,直到最後一個格子第64格放滿為止,這樣我就十分滿足了。 「好吧!
」國王哈哈大笑,慷慨地答應了宗師的這個謙卑的請求.
這位聰明的宰相到底要求的是多少麥粒呢?稍微算一下就可以得出:1+2+2^2+2^3+2^4+……+2^63=2^64-1,直接寫出數字來就是18,446,744,073,709,551,615粒,這位宰相所要求的,竟是全世界在兩千年內所產的小麥的總和!
如果造一個寬四米,高四米的糧倉來儲存這些糧食,那麼這個糧倉就要長三億千米,可以繞地球赤道7500圈,或在日地之間打個來回。
國王哪有這麼多的麥子呢?他的一句慷慨之言,成了他欠宰相西薩·班·達依爾的一筆永遠也無法還清的債。
正當國王一籌莫展之際,王太子的數學教師知道了這件事,他笑著對國王說:「陛下,這個問題很簡單啊,就像1+1=2一樣容易,您怎麼會被它難倒?」國王大怒:
「難道你要我把全世界兩千年產的小麥都給他?」年輕的教師說:「沒有必要啊,陛下。
其實,您只要讓宰相大人到糧倉去,自己數出那些麥子就可以了。假如宰相大人一秒鐘數一粒,數完18,446,744,073,709,551,615粒麥子所需要的時間,大約是5800億年(大家可以自己用計算器算一下!)。
就算宰相大人日夜不停地數,數到他自己魂歸極樂,也只是數出了那些麥粒中極小的一部分。這樣的話,就不是陛下無法支付賞賜,而是宰相大人自己沒有能力取走賞賜。」國王恍然大悟,當下就召來宰相,將教師的方法告訴了他。
西薩·班·達依爾沉思片刻後笑道:「陛下啊,您的智慧超過了我,那些賞賜……我也只好不要了!」當然,最後宰相還是獲得了很多賞賜(沒有麥子)。
14樓:如之人兮
等比數列求和公式為:sn=n*a1(q=1)、sn=a1(1-q^n)/(1-q) =(a1-anq)/(1-q) (q不等於 1)
如果一個數列從第2項起,每一項與它的前一項的比等於同一個常數,這個數列就叫做等比數列。這個常數叫做等比數列的公比,公比通常用字母q表示(q≠0)。 注:
q=1 時,a^n為常數列。
等差數列求和公式:sn=(a1+an)n/2 ;sn=na1+n(n-1)d/2(d為公差); sn=an2+bn;a=d/2,b=a1-(d/2) 。
證明:sn=a1+a2+a3+。。。+an①
sn=an+a(n-1)+a(n-2)+。。。+a1②
①+②得:
2sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an](當n為偶數時)
sn=/2
sn=n(a1+an)/2 (a1,an,可以用a1+(n-1)d這種形式表示可以發現括號裡面的數都是一個定值,即(a1+an)
拓展資料:
如果一個數列從第二項起,每一項與它的前一項的差等於同一個常數,這個數列就叫做等差數列,這個常數叫做等差數列的公差,公差常用字母d表示。等差數列是常見數列的一種,如果一個數列從第二項起,每一項與它的前一項的差等於同一個常數,這個數列就叫做等差數列,而這個常數叫做等差數列的公差,公差常用字母d表示。
例如:1,3,5,7,9……1+2(n-1)。等差數列的通項公式為:
an=a1+(n-1)d (1)前n項和公式為:na1+n(n-1)d/2或sn=n(a1+an)/2。 以上n均屬於正整數。
15樓:匿名使用者
(1) sn=n(a1+an)/2
(2) sn=na1+n(n-1)d/2
等比數列前n項和公式
(1)當公比q=1時,sn=na1
(2)當q不等於1時,
sn=a1(1-q^n)/(1-q)或 sn=(a1-an*q)/(1-q)
拓展內容:
等差數列是常見數專列的一種,可以用ap表示屬,如果一個數列從第二項起,每一項與它的前一項的差等於同一個常數,這個數列就叫做等差數列,而這個常數叫做等差數列的公差,公差常用字母d表示。例如:1,3,5,7,9……(2n-1)。
等差數列的通項公式為:an=a1+(n-1)d。前n項和公式為:
sn=n*a1+n(n-1)d/2或sn=n(a1+an)/2。注意: 以上n均屬於正整數。
等比數列公式就是在數學上求一定數量的等比數列的和的公式。另外,一個各項均為正數的等比數列各項取同底數數後構成一個等差數列;反之,以任一個正數c為底,用一個等差數列的各項做指數構造冪can,則是等比數列。
等差數列的和公式是什麼,等差數列求和公式求和的計算公式是啥?
公式如下 源 1.sn n a1 n n 1 d 2 2.sn n a1 an 2。注意 以上n均屬於正整數。等差數列求和公式求和的計算公式是啥?1 等差數列求復和公式 字母描述制 其中等差數 bai列的首項為 a1,末項du為an,項數為n,公zhi差為d,前daon項和為sn。2 等差數列的通項...
等差數列求公差的公式,等差數列的各種公式
公式 第n項 復 首項 制 項數 1 bai 公差 項數du 末 zhi項 首項 公差 1 公差 末項 首項 項數 1 等差dao數列是常見數列的一種,如果一個數列從第二項起,每一項與它的前一項的差等於同一個 常數,這個數列就叫做等差數列,而這個常數叫做等差數列的公差,公差常用字母d表示。通項公式為...
求等差數列1,4,7,10的前100項的和
該等差數列的首項是1,公差是3,所以通項公式是an 1 3 n 1 3n 2,所以前n項和為sn 1 3n 2 n 2 3n 1 n 2,前一百項和為 3 100 1 100 2 14950 求等差數列1,4,7,10,的前100項的和。能寫成s100得多少嗎 等差數列通項公式 求和公式 如圖所示如...