arctanxdarctanx不定積分,求過程

2021-03-03 21:39:55 字數 1483 閱讀 8602

1樓:小小芝麻大大夢

1/2)(arctanx)²+c。c為積分常數。

解答過程如下:

令u=arctanx,則∫arctanxdarctanx=∫udu。

∫udu

=(1/2)u²+c

由此可得:∫arctanxdarctanx=(1/2)(arctanx)²+c。

2樓:晴天雨絲絲

將「arctanⅹ」看成一個變數,則

=(1/2)(arctanx)²+c。

3樓:匿名使用者

∫arctanxdarctanx=(arctanx)^2/2+c

arctanx的不定積分積分

4樓:發了瘋的大榴蓮

^用分部積分解決

∫ arctanx dx

=xarctanx-∫ x d(arctanx)

=xarctanx-∫ x /(1+x^2) dx

=xarctanx-(1/2) ∫ 1/(1+x^2) d(1+x^2)

=xarctanx-(1/2)ln(1+x^2)+c

擴充套件資料:

在微積分中,一個函式f的不定積分,或原函式,或反導數,是一個導數等於f的函式f,即f′ =f。

分部積分法

不定積分設函式和u,v具有連續導數,則d(uv)=udv+vdu。移項得到udv=d(uv)-vdu

兩邊積分,得分部積分公式

∫udv=uv-∫vdu。

稱公式為分部積分公式.如果積分∫vdu易於求出,則左端積分式隨之得到.

分部積分公式運用成敗的關鍵是恰當地選擇u,v

一般來說,u,v選取的原則是:

1、積分容易者選為v, 2、求導簡單者選為u。

例子:∫inx dx中應設u=inx,v=x

分部積分法的實質是:將所求積分化為兩個積分之差,積分容易者先積分。實際上是兩次積分。

有理函式分為整式(即多項式)和分式(即兩個多項式的商),分式分為真分式和假分式,而假分式經過多項式除法可以轉化成一個整式和一個真分式的和.可見問題轉化為計算真分式的積分.

可以證明,任何真分式總能分解為部分分式之和。

5樓:我不是他舅

∫arctanx dx

=xarctanx-∫x darctanx=xarctanx-∫x/(1+x²) dx=xarctanx-(1/2)*∫d(1+x²)/(1+x²)=xarctanx-(1/2)*ln(1+x²)+c

求不定積分∫ arctanx dx =??????要過程哦!!!!急 急 急

6樓:匿名使用者

∫ arctanx dx

=xarctanx-∫ x/(1+x²) dx=xarctanx-(1/2)∫ 1/(1+x²) d(x²)=xarctanx-(1/2)ln(1+x²)+c

求不定積分

不能這樣解。理由在於 x cosx 但是 你可以設 x cosy f x dx f cosy dcosy siny 3 dy cosy cosy 3 3 c x x 3 3 c 另外一種解法 f cosx sinx 2 1 cosx 2f x 1 x 2 f x dx 1 x 2 dx dx x 2...

xlnx不定積分,dxxlnx不定積分

點選檢視這張 訪問驗證碼是 994903請妥善保管 dx xlnx dlnx lnx dlnlnx lnlnx c 高數求不定積分 dx xlnxlnlnx 具體如圖所示 如果f x 是f x 在區間i上的一個原函式,那麼f x c就是f x 的不定積分,即 f x dx f x c。因而不定積分 ...

不定積分問題,不定積分問題?

這可以通過integration by parts得來的來。我這裡簡單做 自其中一個 c1 x e 2x sinx 2 dx e 2x e 2x sinx dx but e 2x sinx dx i 1 2 sinx de 2x 1 2 sinx e 2x 1 2 e 2x cosx dx 1 2 ...