1樓:望星空世界更美
這對程式設計是很有用的,另外,數學建模中矩陣的應用也是十分廣泛的
大學學習線性代數有什麼意義
2樓:笨笨熊**輔導及課件
線性代數是數學的一個分支,它的研究物件是向量,向量空間
(或稱線性空間),線性變換和有限維的線性方程組。向量空間是現代數學的一個重要課題;因而,線性代數被廣泛地應用於抽象代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。線性代數的理論已被泛化為運算元理論。
由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。
基本介紹:
線性(linear)指量與量之間按比例、成直線的關係,在數學上可以理解為一階導數為常數的函式
非線性(non-linear)則指不按比例、不成直線的關係,一階導數不為常數。
線性代數起源於對二維和三維直角座標系的研究。在這裡,一個向量是一個有方向的線段,由長度和方向同時表示。這樣向量可以用來表示物理量,比如力,也可以和標量做加法和乘法。
這就是實數向量空間的第一個例子。
參考資料
3樓:稀情塵世
線性代數起源於對二維和三維直角座標系的研究。 在這裡,一個向量是一個有方向的線段,由長度和方向同時表示。這樣向量可以用來表示物理量,比如力,也可以和標量做加法和乘法。
這就是實數向量空間的第一個例子。
現代線性代數已經擴充套件到研究任意或無限維空間。一個維數為 n 的向量空間叫做 n 維空間。在二維和三維空間中大多數有用的結論可以擴充套件到這些高維空間。
儘管許多人不容易想象 n 維空間中的向量,這樣的向量(即 n 元組)用來表示資料非常有效。由於作為 n 元組,向量是 n 個元素的「有序」列表,大多數人可以在這種框架中有效地概括和操縱資料。比如,在經濟學中可以使用 8 維向量來表示 8 個國家的國民生產總值(gnp)。
當所有國家的順序排定之後,比如 (中國, 美國, 英國, 法國, 德國, 西班牙, 印度, 澳大利亞),可以使用向量 (v1, v2, v3, v4, v5, v6, v7, v8) 顯示這些國家某一年各自的 gnp。這裡,每個國家的 gnp 都在各自的位置上。
作為證明定理而使用的純抽象概念,向量空間(線性空間)屬於抽象代數的一部分,而且已經非常好地融入了這個領域。一些顯著的例子有:不可逆線性對映或矩陣的群,向量空間的線性對映的環。
線性代數也在數學分析中扮演重要角色,特別在向量分析中描述高階導數,研究張量積和可交換對映等領域。
向量空間是在域上定義的,比如實數域或複數域。線性運算元將線性空間的元素對映到另一個線性空間(也可以是同一個線性空間),保持向量空間上加法和標量乘法的一致性。所有這種變換組成的集合本身也是一個向量空間。
如果一個線性空間的基是確定的,所有線性變換都可以表示為一個數表,稱為矩陣。對矩陣性質和矩陣演算法的深入研究(包括行列式和特徵向量)也被認為是線性代數的一部分。
我們可以簡單地說數學中的線性問題——-那些表現出線性的問題——是最容易被解決的。比如微分學研究很多函式線性近似的問題。 在實踐中與非線性問題的差異是很重要的。
線性代數方法是指使用線性觀點看待問題,並用線性代數的語言描述它、解決它(必要時可使用矩陣運算)的方法。這是數學與工程學中最主要的應用之一。
線性代數到底有什麼用?
4樓:不是苦瓜是什麼
線性代數
在數學、物理學和技術學科中有各種重要應用,因而它在各種代數分支中佔居首要地位。在計算機廣泛應用的今天,計算機圖形學、計算機輔助設計、密碼學、虛擬現實等技術無不以線性代數為其理論和演算法基礎的一部分。
線性代數所體現的幾何觀念與代數方法之間的聯絡,從具體概念抽象出來的公理化方法以及嚴謹的邏輯推證、巧妙的歸納綜合等,對於強化人們的數學訓練,增益科學智慧是非常有用的。
隨著科學的發展,我們不僅要研究單個變數之間的關係,還要進一步研究多個變數之間的關係,各種實際問題在大多數情況下可以線性化,而由於計算機的發展,線性化了的問題又可以被計算出來,線性代數正是解決這些問題的有力工具。線性代數的計算方法也是計算數學裡一個很重要的內容。
線性代數的含義隨數學的發展而不斷擴大。線性代數的理論和方法已經滲透到數學的許多分支,同時也是理論物理和理論化學所不可缺少的代數基礎知識。
現代線性代數已經擴充套件到研究任意或無限維空間。一個維數為 n 的向量空間叫做n 維空間。在二維和三維空間中大多數有用的結論可以擴充套件到這些高維空間。
儘管許多人不容易想象n 維空間中的向量,這樣的向量(即n 元組)用來表示資料非常有效。
由於作為 n 元組,向量是n 個元素的「有序」列表,大多數人可以在這種框架中有效地概括和操縱資料。
比如,在經濟學中可以使用 8 維向量來表示 8 個國家的國民生產總值(gnp)。當所有國家的順序排定之後,比如(中國、美國、英國、法國、德國、西班牙、印度、澳大利亞),可以使用向量(v1,v2,v3,v4,v5,v6,v7,v8)顯示這些國家某一年各自的 gnp。這裡,每個國家的 gnp 都在各自的位置上。
5樓:熱心網友
線性代數是一個很神奇的東西,線性代數方法是使用線性觀點看待問題,並用線性代數的語言
描述它、解決它(必要時可使用矩陣運算)的方法。這是數學與工程學中最主要的應用之一。其
實,所有的高深數學究其根本都離不開線性代數甚至是矩陣。只是我們大學學的都很淺,只是作為
瞭解而已,只有以後真正要搞研究的人才會深入的學習。
拓展資料:
,線性代數是數學的一個分支,它的研究物件是向量,向量空間(或稱線性空間),線性變換和
有限維的線性方程組。向量空間是現代數學的一個重要課題;因而,線性代數被廣泛地應用於抽象
代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。線性代數的理論已被泛化為運算元理論。
6樓:小地主堅持一下
回答這個問題必須等你碰到實際的工程問題,或者類似的模擬工程場景時才好說清楚,而不能直接從數學本身去回答!因為專業太多,僅以我國快速發展高鐵為例回答。高鐵高速執行於路軌,振動是躲不開的問題,必須將振幅限制在可控範圍內。
土木工程師很容易根據動力學方程建立起振動方程組,並求解出列車經過時各處鋼軌的振幅。振動方程組可能很複雜,是非線性的,是時變的,但總可以變形簡化為簡單的線性方程組,這時你學習的線性代數解方程的方法就派上用場。當你利用線性代數知識,得出一組解,分析一通,得出振幅超標需要改進,豈不美哉?
再回到問題的開始。從數學角度講,線性代數是高等數學的補充,是數學工具,是複雜問題簡單化後數學工具。從哲學角度講,自然界問題分為線性問題和非線性問題,非線性問題總可以在一定範圍內通過轉化和簡化變為線性問題。
最直接的回答,線性代數是解線性方程組的。能判斷是否有解、唯一解還是多個解。如果你是大學生,那線性代數的作用就僅限於考試和畢設時將實際問題變為線性方程組後的求解。
7樓:匿名使用者
線性代數是一種代數,是研究基本結構的。這門課一開始介紹了行列式,矩陣,多項式等簡單概念,隨後即對這些簡單事物進行抽象,把它們概括為線性空間,線性空間相對來說就是很抽象的概念了,它也是線性代數主要研究的問題。
圍繞著線性空間我們可以一系列討論,這些討論主要是圍繞著線性空間上的對映進行的,其中有兩種重要的線性對映,就是線性變換和線性函式。線性變換就是線性空間到自身的對映。線性函式就是線性空間到數域上的對映。
由線性變換這個課題,我們討論了矩陣相似理論以及矩陣在相似下的jordan標準型,這裡面蘊含著矩陣特徵值,特徵向量,最小多項式理論,空間第一分解定理還有空間第二分解定理。內容較為豐富。
由線性函式這個課題,我們討論了對偶空間,雙線性函式。雙線性函式可以具體化為一個矩陣,對稱雙線性函式又與二次型密切相關,而二次型又與解析幾何密切相關。反對稱雙線性函式與辛空間有關。
而正定雙線性函式又和euclid空間有關。
線性代數在物理中非常有用,尤其是張量和辛空間的研究。相對論幾乎就是建立在這種語言基礎上的。
8樓:匿名使用者
那要看你是什麼專業了,如果是計算機啊,物理什麼的,在學專業課的時候會用到線性代數裡的知識,如果你是學文科的,比如旅管什麼的,我認為學線性代數,是在培養你的邏輯思維能力,有很多人覺得數學沒有什麼用,那是因為它是基礎學科,不能馬上應用,但能潛移默化的影響你,包括你解決問題的方式,處理問題的態度等等。
9樓:匿名使用者
高深的演算法研究 才用的上這個
10樓:匿名使用者
你讀什麼大學的?你學習不認真不主動,還有你的老師太不認真。我今年即將上大學,杭州師範大學數學系。
我是數學愛好者,你要想知道用處,就學一下物理並精通數學,融會貫通。數學是宇宙的語言,絕對會有用。以我目前的知識,線性變換就是線性代數最粗淺的內容,它可以證xy=1是雙曲線。
我堂哥讀完大學數學不久就忘了,按我的看法,你們根本們深入學,沒聯絡起來學!讀書要靠自己的,別怨教育(雖然現在教育糟糕的連屎都不如,特別是高中),著名數學家華羅庚沒上大學時水平就超過了教授,靠的都是自己的興趣和毅力!
11樓:匿名使用者
1+1有什麼用?
如果你將來的職業不用到數學,數學就是一點用都沒有
12樓:匿名使用者
很有用哦,非常非常有用哦,非常非常非常有用哦,我們老師這麼說的,至於到底有什麼用我也不知道啊,真的不知道啊,真的真的不知道啊,真的真的真的不知道啊,知道的話我現在就去學線性代數咯。
以下內容可忽略:隨著科學的發展,我們不僅要研究單個變數之間的關係,還要進一步研究多個變數之間的關係,各種實際問題在大多數情況下可以線性化,而由於計算機的發展,線性化了的問題又可以被計算出來,線性代數正是解決這些問題的有力工具。線性代數的計算方法也是計算數學裡一個很重要的內容。
大學線性代數都學習哪些內容?
13樓:飛雪射鹿笑倚鴛
線性代數是數學的一個分支,它的研究物件是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。
線性代數被廣泛地應用於抽象代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。線性代數的理論已被泛化為運算元理論。由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。
大學線性代數主要學習如下內容:行列式、矩陣、線性方程組、向量空間與線性變換、特徵值和特徵向量、矩陣的對角化,二次型及應用問題等內容。
線性代數的相關問題線性代數到底是解決什麼問題的有關科目?
這個式子覆在任何情況都成制 立,列滿秩只是等號bai成立的條du件 ab的行 向量zhi是b的行向量的線性組合得到dao的,很顯然,任何一組向量的線性組合不可能增加向量組的秩序,這根據極大線性無關組定義很容易得到 所以r ab r b 同理ab的列向量組是a的列向量組的線性組合,得到r ab r a...
大學教材線性代數那個出版社的好,線性代數用哪個版本的教材最好???
高等教育出版社的不錯,它有配套的教輔,而且不貴,才十幾元,主編是 同濟教學室,書號 7010119411,而且這本書因為編著合理還獲獎了.買二手的也就四五元,基本上二手書店都有賣.線性代數 第2版 清華大學出版社 居餘馬 等 編著 書內容前後聯絡,渾然一體 證明嚴謹,課後習題很多。能合理培養你的線性...
大學的高等代數到底是學什麼,大學的高等代數到底是學什麼?
高等代數學很細,也注重證明,線性代數是非數學專業學生才學的,注重應用 大學的數學專業都學什麼啊?主要學習如下課程 數學分析 高等代數 高等數學 解析幾何 微分幾何 高等幾何 常微分方程 偏微分方程 概率論與數理統計 複變函式論 實變函式論 抽象代數 近世代數 數論 泛函分析 拓撲學 模糊數學。師範類...