1樓:匿名使用者
取x=0 有
分子bai部分du
等於 (1+0)^0.5 -0+1=2
分母部分 等於 0*ln(1+0)=0
所以這是一zhi個 2/0型 當然應該等dao於無窮大。專回去查查有沒有抄錯吧屬。
樓上的思路是利用分母中 ln(1+x) 在 x->0 時 和 x是等價無窮小。 但分子部分的處理是錯誤的。
分子中根號裡面的式子, 實際上是 1+ 2 sin x= sin^2 (x/2) +2 sin (x/2) cos (x/2) + cos^2 (x/2)= [ sin (x/2) + cos (x/2)]^2 ,然後開方。
一道求極限題 20
2樓:
恩對,好像運用求函式極限時候,可以把極限號放到函式裡就可以證明對了哈?就是lim ln f(x)=ln lim f(x)這樣來證。 不過,恩,我還是不替換好了,怕不行
3樓:佳尼斯
答案是(1-1)/(1-1)極值為0
求解一道極限題
4樓:匿名使用者
分母的分母就是分子呀,這樣變形是為了使用羅必塔法則來計算。
一道高數題求極限的簡單,高數一道求極限的題求簡單方法我是不斷用洛必達法則,三次之後出現了一個很長的式子,可以求出
這個不是很難,分bai子分母都有理化 du就可以 x 0 lim zhi 1 tanx 1 sinx x 1 sinx dao2 1 lim 1 tanx 1 sinx 1 sinx 2 1 lim2 tanx sinx 2x 3 lim tanx sinx x 3 因為tanx x x 3 3 o...
求解一道數學題,極限的題。謝謝,求解一道數學題。
因為 xn 1 xn q,所以 xn 1 xn q,所以 xn xn 1 q,x2 x1 q。n 1個等式累乘得 xn x1 q n i 所以0 xn 又因為0無窮 所以lim xn 0 n趨於無窮 所以limxn 0 n趨於無窮 這道題運用了高等數學的夾逼原理。求解一道數學題。蘋果和橘子各賣出75...
關於函式求極限的一道題,WolframAlpha上的過程是不
2 3 4 5 直接代入即得3 limf x 2,limf x 2,f 0 0 f x 在 x 0 處不連續,是跳躍間斷點。4.使函式值不存在的點即為間斷點 1 x 0,2 x 0 3 x k 1 2 k 為任意整數。4 x 0 關於函式求極限的一道題,wolframalpha上的過程是不是錯了 劃...