這是計算題,計算這題的行列式,求詳細過程,最好寫在紙上拍下來,感謝感謝

2021-04-26 12:48:18 字數 1052 閱讀 8127

1樓:

a'=-a,|a|=|a'|=|-a|=(-1)∧5 |a|=-|a|,故|a|=0

2樓:奇蹟i橫掃千軍

第一步,a11,a22,a33,a44,a55變成一或者負一

第二步,變成上三角,

第三部,主對角線乘積計算結果。

求教線性代數這個題的詳細計算過程,謝謝!

3樓:數學劉哥

對行列式進行變換計算,基本就是把這個行列式化成上三角的行列式比較好計算,

主要用到了,行列式交換兩行加負號,某一行加上其他的行的倍數行列式不變,這兩條基本性質

4樓:匿名使用者

按第一列,然後用範德蒙行列式公式計算,寫起來複雜,算起來簡單。

範德蒙行列式

以上,請採納。

線性代數:範德蒙德行列式:第3題,求過程,拍下來,我會採納的!

5樓:匿名使用者

主要的《過程》是一個交換的過程:第n+1行《一行一行》交換到第一行,需要交換n次;第n行《一行一行》交換到第2行需要交換n-1次;。。。第1行交換到第n+1行同時第2行交換到第n行需要交換1次。

故共需交換1+2+...+n=(1+n)n/2 次,行列式成【標準的】《範德蒙》

d(n+1)=|1 1 1 ... 1|*[(-1)^n(1+n)/2]

a a-1 a-2... a-n

.....

a^n...........(a-n)^n

=[(-1)^(1+n)n/2]*[(a-n)-(a-n+1)]*...*[(a-n)-a]*...*[(a-1)-a]

=[(-1)^(1+n)n/2]*[(-1)(-2)...(-n)*...*(-1)

=[(-1)^(1+n)n/2]*[(-1)^(1+n)n/2]*n!*(n-1)!*...*1!

=[(-1)^(1+n)n]*n!*...*2!*1!

對不起,沒有裝置,無法拍照。覺得有用就請採納。歡迎追問。

用行列式定義計算,這一題用行列式的定義計算怎麼計算呀?

得數為 1 1,2000,1999,3,2 1 2 1999 2000 這一題用行列式的定義計算怎麼計算呀?第一行取第一個元素n,第二行取第三個元素2,第三行取第四個元素3,第n 1行取第n個元素n 1 第n行取第二個元素1。只有這一種取法取出的n個數之積不為0 這些數對應的排列為 134 n2 其...

n階行列式的計算,怎麼計算n階行列式

將最後一列乘於 an n 1,2,n 1 分別加到第n列,化為x a1 10 x a2 10 0 1.x an 1 10.0 1 最右邊那一列分解開就行 此題的解答方法很多,不知道你的專業的難度。以下提供幾種思路。解法一 求此矩陣a的行列式 a a b e,矩陣b為所以元素為3 所以矩陣b的特徵值為...

線性代數行列式計算,線性代數行列式的計算有什麼技巧嗎?

答案如下圖所示 方法一 直接計演算法,用主對角乘積之和減去副對角乘積之和。方法二 按行列式求和,這裡是按第一行計算的。你也可以按列計算。線性代數行列式的計算有什麼技巧嗎?線性代數行列式有如下計算技巧 1 行列式a中某行 或列 用同一數k乘,其結果等於ka。2 行列式a等於其轉置行列式at at的第i...